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Abstract

Desensitization is a physiological feedback mechanism that blocks detrimental effects of persistent stimulation.

G protein-coupled receptor kinase 2 (GRK2) was originally identified as the kinase that mediates G protein-coupled
receptor (GPCR) desensitization. Subsequent studies revealed that GRK is a family composed of seven isoforms
(GRK1-GRK7). Each GRK shows a differential expression pattern. GRK1, GRK4, and GRK7 are expressed in limited
tissues. In contrast, GRK2, GRK3, GRK5, and GRK6 are ubiquitously expressed throughout the body. The roles of GRKs
in GPCR desensitization are well established. When GPCRs are activated by their agonists, GRKs phosphorylate
serine/threonine residues in the intracellular loops and the carboxyl-termini of GPCRs. Phosphorylation promotes
translocation of B-arrestins to the receptors and inhibits further G protein activation by interrupting receptor-G
protein coupling. The binding of B-arrestins to the receptors also helps to promote receptor internalization by
clathrin-coated pits. Thus, the GRK-catalyzed phosphorylation and subsequent binding of B-arrestin to GPCRs are
believed to be the common mechanism of GPCR desensitization and internalization. Recent studies have revealed
that GRKs are also involved in the -arrestin-mediated signaling pathway. The GRK-mediated phosphorylation of the
receptors plays opposite roles in conventional G protein- and 3-arrestin-mediated signaling. The GRK-catalyzed
phosphorylation of the receptors results in decreased G protein-mediated signaling, but it is necessary for
B-arrestin-mediated signaling. Agonists that selectively activate GRK/B-arrestin-dependent signaling without affecting
G protein signaling are known as B-arrestin-biased agonists. Biased agonists are expected to have potential therapeutic
benefits for various diseases due to their selective activation of favorable physiological responses or avoidance of the
side effects of drugs. Furthermore, GRKs are recognized as signaling mediators that are independent of either G
protein- or B-arrestin-mediated pathways. GRKs can phosphorylate non-GPCR substrates, and this is found to be
involved in various physiological responses, such as cell motility, development, and inflammation. In addition to these
effects, our group revealed that GRK6 expressed in macrophages mediates the removal of apoptotic cells (engulfment)
in a kinase activity-dependent manner. These studies revealed that GRKs block excess stimulus and also induce cellular
responses. Here, we summarized the involvement of GRKs in B-arrestin-mediated and G protein-independent signaling
pathways.
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Introduction activation by blocking receptor-G protein coupling [2,3].

G protein-coupled receptor kinases (GRKs) were origin-
ally identified as the kinases that phosphorylate and
desensitize agonist-bound G protein-coupled receptors
(GPCRs) [1]. The phosphorylation of agonist-bound
GPCR by GRKs leads to the translocation and binding of
[-arrestins to the receptors, inhibiting further G protein
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The phosphorylation of GPCR by GRKs and the binding
of [B-arrestins to the receptors also promote agonist-
bound GPCR internalization [4-6]. Thus, the GRK-
catalyzed phosphorylation and binding of pB-arrestin to the
receptors are believed to be the common mechanism of
GPCR desensitization [7,8]. GPCR desensitization is im-
portant for maintaining homeostasis, as malfunction of
the desensitization process could cause various diseases
such as heart failure [9-11], inappropriate diuresis [12],
asthma [13], Parkinson’s disease [14], and autoimmune
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disease [15]. Thus, GRKs play an essential role in main-
taining cells and tissues in normal states.

GRKs are composed of seven isoforms (GRK1-GRK?7)
[16]. Although each GRK is involved in GPCR desensiti
zation, some differences are observed in the expression,
structure, and functions of GRKs [17,18]. GRK1, GRK4,
and GRK7 are expressed in limited tissues. GRK1 and
GRK?7 are expressed in the retina [19-21], and GRK4 is
expressed in the testis [22]. In contrast, other GRKs
(GRK2, GRK3, GRK5, and GRK6) are expressed ubiqui-
tously throughout the body [23-26]. Based on sequence
homology, the GRK family can be divided into the three
following subfamilies: the GRK1 subfamily composed of
GRK1 and GRK?7, the GRK2 subfamily composed of GRK2
and GRK3, and the GRK4 subfamily composed of GRK4,
GRK5, and GRK6. All GRK isoforms share similar do-
mains, which are composed of an amino-terminal domain
unique to the GRK family of kinases, a regulator of G pro-
tein signaling homology domain; which could regulate
GPCR signaling by phosphorylation-independent mecha-
nisms [27-29], a serine/threonine protein kinase domain,
and a carboxyl-terminal domain [30]. The amino-terminal
domain of GRK?2 interacts with the G protein By subunit,
whereas that of GRK4, GRK5, and GRK6 interacts with
phosphatidylinositol 4,5-bisphosphate (PIP2) [18,31,32].
Sequence divergence has been observed among GRKs in
the carboxyl-terminal domain; GRK1 and GRK?7 have short
prenylation sequences [33], GRK2 and GRK3 have pleck-
strin homology domains that interact with G protein Py
subunits [34,35] and PIP2 [36], and the members of the
GRK4 subfamily have palmitoylation sites [22,37] and/or
positively charged lipid-binding elements [38,39]. The
carboxyl-termini of GRKs appear to be important for the
localization and translocation of kinases to the membrane
by means of posttranslational modifications or sites of
interaction with lipids or membrane proteins [39]. The
GRK4 subfamily (GRK4, GRK5, and GRK6) have been
found to contain a functional nuclear localization signal
(NLS) [39-41], and GRK5 and GRK6 have been shown to
bind to DNA [40]. These properties could lead to func-
tional diversification among GRKs. In fact, knockout mice
for each GRK showed different phenotypes. GRK2 knock-
out mice are embryonic lethal [42], but knockout mice for
other GRKs are born and develop normally. However,
GRK6 knockout mice show dopaminergic supersensitivity
[14] and develop autoimmune disease [43]. Further studies
using knockout mice would reveal functional diversifica-
tion among GRKs.

Involvement of GRKs in G protein-independent signaling

Recent studies have revealed that GRKs are involved not
only in GPCR desensitization but also in G protein-
independent signaling [44,45]. G protein-independent sig-
naling requires GRKs and [B-arrestins. GRK5 or GRK®6 is
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required for G protein-independent extracellular signal-
regulated kinase (ERK) activation by angiotensin II type
1A receptor (AT 4R) [46], vasopressin receptor 2 (V2R)
[47], and P2-adrenergic receptor (B2-AR) [48]. GRK/f-
arrestin-dependent signaling induces physiological re-
sponses that are different from G protein-mediated re-
sponses [49-51]. The activation of one of these signaling
pathways could be beneficial, whereas the activation of the
other signaling pathway could be harmful [52-55]. These
findings have led to the identification and synthesis of ago-
nists that selectively activate either G protein- or GRK/p-
arrestin-dependent signaling [56,57]. Thus far, some ago-
nists have been found to activate either G protein- [58] or
GRK/p-arrestin-dependent signaling [59,60] by their own
GPCRs. These agonists that can selectively activate only
one signaling pathway are known as “biased agonists”
[61] and have been proposed to be preferred for the treat-
ment of various diseases [62]. As different conformational
changes are induced in the cytoplasmic domain of GPCRs
by the binding of full agonists and antagonists, biased ago-
nists could induce the conformational state that selectively
activates one of two signaling pathways [63] (Figure 1).
However, the recent development of bioluminescent res-
onance energy transfer (BRET)-based G protein activation
biosensors enabled the detection of G protein activation
by stimulation with a GRK/p-arrestin-biased agonist [64].
It demonstrated that GRK/B-arrestin-biased agonists can
activate G protein-mediated pathway, although the degree
of activation is low. However, it is possible that the differ-
ent conformational states of GPCRs selectively recruit a
specific GRK, leading to the activation of GRK/[B-arrestin-
dependent signaling pathways.

The mechanism by which GRKs determine whether to
promote GPCR desensitization or G protein-independent
signaling remains unclear. Several studies have focused on
the GRK subfamily that mediates desensitization or GRK/
B-arrestin signaling [46,47,65,66]. It has been shown that
the phosphorylation of AT;,R by GRK2 and GRK3 in-
duces GPCR desensitization and internalization, whereas
phosphorylation by GRK5 leads to [-arrestin-dependent
ERK activation [46]. It has also been reported that GRK2
and GRK3 promote V2R desensitization, and GRK5 and
GRK6 are responsible for the phosphorylation of ERK
[47]. These studies demonstrate that different GRKs
promote different functions of GPCRs, desensitization
or signal transduction. Furthermore, the type of ligand
is also important to determine whether to promote
desensitization or signaling by GRKs. CC chemokine li-
gands 19 and 21 (CCL19 and CCL21) are the ligands of
CC chemokine receptor type 7 (CCR7) that activate differ-
ent GRK subfamilies, leading to receptor desensitization
or signaling. CCL19 induces GPCR desensitization that
was mediated by GRK3 and GRK6, whereas CCL21
promotes GRK/B-arrestin-mediated signaling that was
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Figure 1 GRKs are involved in cellular signaling that is independent of G protein activation. Biased agonist activates either G protein
signaling or GRK/B-arrestin-dependent signaling. Each agonist promotes distinct conformational changes of GPCRs. Unbiased agonists activate
both G protein signaling and GRK/B-arrestin-dependent signaling, whereas biased agonists activate either G protein- or GRK/R-arrestin-dependent
signaling as shown in bold arrows. Physiological responses mediated by GRK/B-arrestin-dependent signaling are believed to be distinct from
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dependent on GRK6 [65]. This result suggests that the
ligands of GPCRs selectively activate specific GRKs, and
activated GRKs then determine whether to promote
GPCR desensitization or signaling. Although it is not fully
understood how different ligands selectively recruit spe-
cific GRKs to the receptors, different conformational
changes induced by different ligands may determine
which GRK is selectively recruited to the receptors [63].

It has also been proposed that a differential phosphoryl-
ation pattern is essential for determining whether to pro-
mote GPCR desensitization or signaling. Butcher et al.
found that different tissues and cells exhibit a differential
GPCR phosphorylation pattern of the M3 muscarinic re-
ceptor [67]. However, they did not evaluate which kinases;
such as protein kinase A, protein kinase C, and GRKs; are
involved in the phosphorylation of the receptors. No-
bles et al. demonstrated that different GRKs phosphor-
ylate different sets of serine/threonine residues in the
carboxyl-terminus of GPCR, and this determines
whether desensitization or signaling is promoted by the
receptor [68]. They found that GRK2 and GRK6 phos-
phorylate different sites in p2-AR, which determines the
different functions of [-arrestin, [-arrestin-mediated
desensitization or signaling [68]. Thus, the GPCR phos-
phorylation pattern (which is proposed as “phosphoryl-
ation barcoding”) [69] would be an important factor for
the promotion of desensitization or signaling by GRKs.

Thus, the conformational changes of GPCRs and phos-
phorylation pattern of GPCRs could be important for G
protein activation, GPCR desensitization, and GRK/(-
arrestin-mediated signaling. Although “phosphorylation
barcoding” was recently proposed as a key factor for de-
termining whether to promote desensitization or GRK/{3-
arrestin-mediated signaling, it remains to be elucidated

how each GRK phosphorylates specific serine/threonine
residues. The identification of the consensus phosphoryl-
ation sequences for each GRK would be meaningful to
understand how GRKs regulate GPCR desensitization and
GRK/p-arrestin-dependent signaling.

Physiological importance of GRK/B-arrestin-biased agonist
Many agonists can usually activate both G protein- and
B-arrestin-mediated signaling pathways [62]. A biased
agonist is defined as an agonist that selectively activates
only one of these pathways [61]. Thus far, an increasing
number of GPCR agonists have been found to function
as biased agonists. It also suggests the potential use of
biased agonists as a therapeutic agent [53,62]. Among
various reports, biased agonists for f-ARs are well stud-
ied in terms of clinical use [70,71]. Noma et al. demon-
strated that GRK/B-arrestin-biased signaling by Pp1-AR
elicits cardioprotective effects in vivo [55]. GRK phos-
phorylates serine/threonine residues in the carboxyl-
terminus of B1-AR. They substituted these serine/threo-
nine residues with alanine and produced transgenic mice
expressing mutant B1-AR in the heart (GRK™-f1-AR
TG). They also produced transgenic mice expressing
wild-type P1-AR in the heart (WT-B1-AR TG). When
these mice were subjected to chronic exposure of iso-
proterenol, GRK™-B1-AR TG mice showed a significantly
higher number of apoptotic cells than WT-f1-AR TG
mice. This resulted in decreased cardiac performance in
GRK™-B1-AR TG mice. They also demonstrated that epi-
dermal growth factor receptor (EGFR) transactivation by
GRK/B-arrestin-mediated, but not G protein-mediated,
signaling is important for cardioprotective effects. As
the chronic activation of Gs signaling by p1-AR is re-
ported to be cardiotoxic, B-adrenergic blocking agents
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are beneficial for the treatment of heart failure [72].
They suggested that GRK/P-arrestin-biased agonists,
which also antagonize Gs signaling, are more suitable for
the treatment of heart failure. Among 20 B-adrenergic
blocking agents, alprenolol and carvedilol have been iden-
tified as biased agonists for B1-AR [60], and carvedilol has
been clinically used for the treatment of heart failure.
Alprenolol and carvedilol could induce EGFR transactiva-
tion in a GRK/pB-arrestin-dependent manner. However, it
remains to be determined whether alprenolol-mediated G
protein-independent signaling also has cardioprotective
effects against heart failure. In contrast, our group recently
reported that the long-term oral administration of meto-
prolol, a B-adrenergic blocking agent, induces cardiac fi-
brosis in mice by f1-AR in a GRK5/f-arrestin2-dependent
manner without G protein activation [73]. Fibrosis is the
excessive deposition of extracellular matrix, such as colla-
gen and fibronectin, and is believed to be deleterious for
cardiac function. In contrast to carvedilol and alprenolol,
metoprolol does not promote the EGFR internalization
and activation [60,73]. This suggests that metoprolol acti-
vates biased signaling in a different manner from that of
carvedilol and alprenolol.

AT AR has also been well studied as a model GPCR to
analyze biased agonists [70,71]. Biased agonists that se-
lectively activate GRK/p-arrestin-dependent signaling in
cardiomyocytes have been reported to promote cardio-
myocyte growth and cardiac hypertrophy and affect car-
diac performance [74]. [Sarl, Ile4, Ile8] angiotensin II
(SII), TRV120023, and TRV120027 have been developed
as GRK/B-arrestin-biased agonists for AT R, and SII
has been frequently used for the study of G protein-
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independent signaling of AT AR [54,59,64,75,76]. Both
SII and TRV120027 have been shown to increase cardiac
contractility in vitro and in vivo [59,75]. In contrast,
TRV120023 promotes the survival of cardiomyocytes dur-
ing ischemia/reperfusion injury in vivo [54]. Thus, biased
agonist-promoted GRK/f-arrestin-dependent signaling by
AT AR could be beneficial for the heart under physio-
logical and pathological conditions. However, it remains
to be determined which GRKs are involved in AT, R-me-
diated biased signaling and which molecules downstream
of GRKs and B-arrestins are responsible for signaling.

Interaction of GRKs with non-GPCR proteins
In addition to the role of GRKs in GRK/B-arrestin-
dependent signaling, it has been recognized that GRKs
also interact with non-GPCR proteins [30,77]. Non-
GPCR proteins that interact with GRKs include single-
transmembrane receptors [78,79], cytosolic proteins
[80-82], and nuclear proteins [83,84] (Figure 2). Many
studies demonstrated that the interaction of GRKs with
intracellular non-GPCR proteins affects various signaling
pathways [80,85-89]. This includes inflammation [85,86],
cell motility [81,90], and cell cycle [91,92] (Table 1).
However, it remains unclear whether these atypical sig-
naling pathways have physiological significance in vivo.
Several reports have suggested that the interaction of
GRK with intracellular non-GPCRs affects signaling path-
ways. It has been reported that GRK2 negatively regu-
lates CCL2-induced ERK activation by interacting with
mitogen-activated protein kinase kinase (MEK) [93].
Other signaling pathways, including the nuclear factor-
kappa B (NF-«B) pathway [85,86], insulin signaling [94],

various physiological responses.

Cardiac Cardiac
hypertrophy  development
Portal T T Engulfment of
hypertension apoptotic cell
HDAC5 Raptor
Akt \ \ f / GIT1
IRS-1 /4 \ p53
Insulin HDAC6 lkBo Apoptosis
resistance l i
Cell motility  Inflammation

Figure 2 Binding partners with GRKs. GRKs regulate diverse signaling pathways by the interaction with intracellular proteins, resulting in
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Table 1 Interactions of each GRKs with intracellular proteins
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GRK

. Binding partner Function Reference
isoform
Gag Regulation of Ga, signaling [27,28]
mGIuR1 Regulation of G protein signaling in a phosphorylation-independent manner [29]
GBy Regulation of GRy-stimulated signaling [31]
PDGFRB Phosphorylation of PDGFRB by GRK2 reduces PDGFR signaling [78,79]
GRK2 associates with and phosphorylates HDAC6 to enhance a-tubulin deacetylase activity and
HDAC6 - [81]
cell motility
Akt Interaction of GRK2 with Akt inhibits Akt activity [82]
p38 Phosphorylation of p38 by GRK2 impairs MKKé-induced p38 activation [88]
GRK2 APC Interaction of GRK2 with APC inhibits canonical Wnt signaling [89]
GIT1 Interaction between GRK2 and GIT1 is important for GRK2-mediated cell motility [90]
CDK2 Phosphorylation of GRK2 by CDK2 is important for cell cycle progression [91]
GRK2 negatively regulates CC chemokine ligand 2-induced ERK activation by the interaction
MEK ) [93]
with MEK
IRS-1 Phosphorylation of IRS-1 by GRK2 mediates endothelin-1-induced insulin resistance [94]
clathrin Interaction of GRK2 with clathrin promotes GPCR internalization [95]
PI3K Translocation of PI3K to the plasma membrane is involved in GPCR internalization [96]
HSP9O !meractl\oln pf GRK2 with HSP90 at the mitochondria promotes pro-death signaling after (1001
ischemic injury
B-arrestin1 Phosphorylation of B-arrestin1 by GRK5 down-regulates G protein-independent signaling [80]
HDACS Phosphorylation of HDAC5 promotes maladaptive cardiac hypertrophy [83]
p105 Interaction with p105 results in inhibition of lipopolysaccharide-induced ERK activation [84]
IkBa Regulation of NF-kB signaling [85,86]
GRKS y-tubulin centrin Co-localization of GRK5 with y-tubulin, centrin, and pericentrin is important for regulation of 92]
pericentrin microtubule nucleation and cell cycle progression
p53 Phosphorylation of p53 by GRK5 inhibits DNA damage-induced apoptosis [106]
Grk5l, which is the closest homolog of GRK5 in zebrafish, interacts with raptor, and
raptor ; . [108]
regulates mTOR signaling
GRK6 G GRK6 cooperates with GIT1 to enhance Racl activity, and promotes engulfment of 43]

apoptotic cells

and Smad signaling [87], have also been modulated by the
interaction of GRKs with non-GPCR proteins. Although
GRKs exhibit kinase activity, GRKs can interact with
intracellular proteins and modulate downstream signaling
pathways in a kinase activity-independent manner [95-97],
indicating that GRKs can act as scaffold proteins. Because
GRKs are composed of several domains other than a kin-
ase domain, these regulatory domains may determine
phosphorylation-independent signaling of GRKs.
Interactions between GRKs and intracellular proteins
occurred at various sites including the outer membrane
of the mitochondria and nucleus in addition to the
plasma membrane and cytosol. For example, GRK2 was
shown to localize in the mitochondria [98] and to inter-
act with heat shock protein 90, a known mitochondrial
chaperone [99]. A recent study further revealed that
the ERK-mediated phosphorylation of GRK2 at Ser670
was important for the localization of GRK2 in the

mitochondria, and this localization induced Ca**-induced
opening of the mitochondrial permeability transition pore
after ischemic injury, which promoted cardiomyocyte
death [100]. It was also shown that GRK2 was detected in
the damaged mitochondria in the brain [101]. These re-
ports suggested the crucial role of GRK2 in the mitochon-
dria. In contrast, GRK5 was shown to localize in the
nucleus and phosphorylated class II histone deacetylase 5
(HDACS5) [83]. This phosphorylation enhanced HDAC5
activity, leading to the export of HDAC from the nucleus.
This resulted in the induction of myocyte enhancer factor-
2 derepression and maladaptive cardiac hypertrophy.
GRKS5 was also reported to interact with the inhibitor of
kappa B alpha (IkBa). Interaction between GRK5 and IkBa
promoted the nuclear accumulation of IkBa, which re-
sulted in the inhibition of NF-«kB activity [86]. However,
another group reported opposite results and showed
that GRK5 enhanced NF-«B activity by promoting the
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phosphorylation and degradation of IxBa [85]. The NLS
of GRK5 was important for nuclear function of GRK5.
Therefore, other GRKs such as GRK4 and GRK6 (the
GRK4 subfamily) may have similar functions in the nu-
cleus as GRK5 because they also have their own NLS [40].

Some studies have reported the mechanism by which
GRKs are activated and promote signaling by non-GPCR
proteins [30]. It has been shown that GRK2 or GRK5
phosphorylates tubulin [102-104], and the phosphoryl-
ation level of tubulin by GRK2 is increased by B-AR
stimulation [103]. Furthermore, GRK2 also phosphory-
lates insulin receptor substrate (IRS)-1, the phosphoryl-
ation activity of which is regulated by endothelin-1, an
agonist of endothelin type A receptor [94]. These reports
suggest that the binding of GRKs to activated GPCR
could promote the interaction with intracellular non-
GPCR proteins and stimulate the GRK-catalyzed phos-
phorylation of intracellular non-GPCR proteins. Partici-
pation of GRK2 in cellular regulation is also modulated
by another kinase. The phosphorylation of GRK2 by
cyclin-dependent kinase 2 (CDK2) transiently downregu-
lates GRK2 expression, and the CDK2-catalyzed phos-
phorylation of GRK2 affects cell cycle progression [91].
In addition to phosphorylation, Cys of GRK2 at position
340 is modified by nitric oxide (NO), and the S-
nitrosylation of GRK2 is critical for the downregulation
of B-AR signaling in vitro and in vivo [105]. A cell-
permeable NO donor, S-nitrosocysteine (CysNO), down-
regulated B-AR signaling by inhibiting the GRK2-
catalyzed phosphorylation of B-AR and binding of f3-
arrestin to B-AR. Thus, posttranslational modification of
GRKs may be another important factor for the regula-
tion of GRK-mediated signaling.

Recent studies have suggested an in vivo significance
of the interaction between GRK and intracellular non-
GPCR proteins. GRK2 interacts with Akt and inhibits
endothelial NO synthase activity and NO production,
resulting in less severe portal hypertension in GRK2-
deficient mice after liver injury [82]. GRK5 phosphory-
lates p53 and inhibits DNA damage-induced apoptosis
in vitro and in vivo [106]. Although the mechanism is
unknown, GRK2 was recently found to be involved in
developmental and tumoral vascularization in mice
[107]. That study was performed using endothelium-
specific Grk2-knockout mice [107] because global abla-
tion of GRK2 resulted in embryonic lethality [42]. Fur-
thermore, it was recently revealed that Grk5l, which is
the closest homolog of GRKS5 in zebrafish, controlled
heart formation during early development [108]. In
their report, Grk5l was found to interact with Raptor,
which is a component of mammalian target of rapamy-
cin (mTOR) complex 1. Subsequently, the interaction
of Grk5l with Raptor inhibited mTOR signaling by an
unknown mechanism. Further studies are required to
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reveal undefined in vivo functions of GRKs with new
binding partners.

Although the abovementioned studies have mainly fo-
cused on GRK2 and GRKS5, the importance of the inter-
action of other GRK subfamilies with intracellular proteins
remains poorly understood. GRK6 was recently found to
mediate the removal of apoptotic cells (engulfment) and
the clearance of senescent red blood cells through a new
engulfment pathway [43]. Insufficient engulfment in
GRK6-deficient mice resulted in the development of an
autoimmune disease-like phenotype [43].

Conclusions

It has become clear that GRKs are multifunctional pro-
teins that interact not only with GPCRs but also with
intracellular non-GPCR proteins. However, several issues
remain to be resolved in future studies. One issue is the
mechanism by which GRKs phosphorylate specific serine/
threonine residues in GPCRs and non-GPCR proteins. Al-
though GRKs can phosphorylate a large number of pro-
teins, the consensus sequence of the phosphorylation site
for each GRK has not been firmly established [109]. The
second issue is the identification of molecules upstream of
GRKs that are responsible for the increased phosphoryl-
ation of non-GPCR proteins. It is also important to eluci-
date signaling cascades from GRKs to cellular events.
Another issue is the mechanisms for regulating the ex-
pression and activity of each GRK. We found that GRK6
expression was increased in MRL/Lpr mice, a murine
model of systemic lupus erythematosus (SLE), and the
autopsied spleens from SLE patients [43]. The changes in
expression levels of GRKs were also found in patients with
heart failure [110], schizophrenia [111], and depression
[112]. However, it is unknown how these changes in ex-
pression cause these diseases. In contrast, it was revealed
that overexpression of GRK2ct (also known as -ARKct),
a peptide inhibitor composed of the last 194 amino acids
of GRK?2, was successful for the prevention of heart failure
through the inhibition of mitochondrial translocation
[9,113-115]. These studies suggested that the inhibitors of
GRKs could be effective for the treatment of heart failure
[116]. Instead of the peptide inhibitor GRK2ct, chemical
compounds are a more promising tool for treating heart
failure. Recent reports revealed that the development of
selective inhibitors against GRK2 is possible [117,118]. It
is interesting to examine whether selective inhibition of
GRK2 using chemical compounds [117,118] is beneficial
for the abovementioned diseases.
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