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Abstract
G protein-coupled receptors are key regulators of cellular communication, mediating the efficient
coordination of a cell's responses to extracellular stimuli. When stimulated these receptors
modulate the activity of a wide range of intracellular signalling pathways that facilitate the ordered
development, growth and reproduction of the organism. There is now a growing body of evidence
examining the mechanisms by which G protein-coupled receptors are able to regulate the
expression, activity, localization and stability of cell cycle regulatory proteins that either promote
or inhibit the initiation of DNA synthesis. In this review, we will detail the intracellular pathways
that mediate the G protein-coupled receptor regulation of cellular proliferation, specifically the
progression from the G1 phase to the S phase of the cell cycle.

Background
An efficient system of cellular communication has
evolved to ensure the ordered development, growth,
maintenance and reproduction of multicellular organ-
isms. This allows cells to respond to environmental stim-
uli as well as to each other by integrating the numerous
extracellular and intercellular cues that they are constantly
receiving into a coordinated response. Central to cellular
signalling are the G protein-coupled receptors (GPCRs).
The human genome is estimated to encode 800 to 1000 of
these seven-transmembrane spanning proteins [1,2]. Acti-
vated GPCRs promote a wide spectrum of intracellular
biochemical changes resulting in the modulation of many
aspects of physiology, growth, development and disease
control [3]. GPCRs have long been known to mediate
mitogenic signals leading to cellular proliferation [4] and
the overexpression or mutation of many GPCR subtypes
in numerous cell types is thought to contribute to deregu-
lated growth and tumour development [5,6].

Eukaryotic cell cycle progression is driven by a coordi-
nated series of phosphorylation events, chiefly mediated
by the cyclin-dependent kinase (CDK) family of serine/
threonine kinases. The activity of the CDKs is, in turn, reg-
ulated by their phosphorylation status as well as by their
interaction with numerous activating and inhibitory
binding proteins. Active CDK complexes drive the cell
cycle through its phases by phosphorylating downstream
proteins [7]. During the G1 phase of the cell cycle, these
CDK-driven events are responsive to extracellular cues. It
is during this period of the cell cycle that GPCR-induced
signal transduction pathways are able to affect, either neg-
atively or positively, cell cycle progression. In this review
we will examine the ability of GPCRs to modulate the
activity of intracellular pathways that connect activation
at the cell membrane to cellular proliferation.
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Heterotrimeric G proteins
GPCRs predominantly, although not exclusively [8], exert
their effects by activating heterotrimeric G proteins. This
promotes the release of free Gα and Gβγ subunits, which
then initiate intracellular signal transduction. GPCRs pref-
erentially couple to heterotrimeric G proteins that are
grouped into four classes, known as Gαq/11, Gαi/o, Gαs and
Gα12/13 [9]. Members of all four classes of Gα subunit
have been shown to be involved in the regulation of cell
growth and proliferation by virtue of the fact that consti-
tutively active Gα mutants have been found in numerous
tumours. The gsp oncogene (for Gs protein) is a mutation-
ally active form of Gαs detected in pituitary and thyroid
tumours that promotes cell growth by constitutively acti-
vating adenylyl cyclase (AC). The gip2 oncogene (for Gi
protein) promotes tumour growth by activating mitogen-
activated protein kinase (MAPK) pathways [10], while
mutationally activated forms of Gαz, Gαq, Gα12 and Gα13
are able to generated transformed phenotypes [10,11].

Numerous GPCRs utilize heterotrimeric G proteins to
modulate cellular proliferation. Direct evidence of the
involvement of Gi/o proteins has been obtained by the use
of pertussis toxin (PTX) to block Gi/o-mediated signalling.
For example, melatonin acting on Gi/o-coupled MT1 recep-
tors expressed in MCF-7 breast cancer cells suppresses
estrogen and glucocorticoid-induced cell proliferation
[12], possibly by inhibiting the steroid receptor-induced
transcription of the cyclin D1 gene [13,14]. These effects
of melatonin are entirely blocked by PTX. The use of PTX
has also indicated that Gi/o proteins mediate the promo-
tion of DNA synthesis by α1-adrenergic receptors in oste-
oblasts [15], κ-opioid receptors in C6 glioma cells [16]
and lysophosphatidic acid (LPA) receptors in human
fibroblasts [17]. Further examples of GPCR utilization of
Gi/o proteins in proliferative responses can be found in
Table 1.

The involvement of Gs proteins in a few GPCR-initiated
responses has been determined using cholera toxin (CTX),
which constitutively activates Gαs subunits, preventing
further activation by GPCRs. Glucagon-like peptide 2
(GLP-2) acts as a potent mitogen at Caco-2 intestinal epi-
thelial cells but pretreatment of cells with CTX signifi-
cantly reduces GLP-2-induced DNA synthesis [18].
Likewise, CTX blocks the LPA-induced proliferation of ret-
inal pigment epithelial cells [19], although the relative
contribution of LPA receptor activation of Gi/o and Gs pro-
teins in these responses was not determined. Other Gs-
coupled GPCRs also play significant roles in promoting or
inhibiting cell cycle progression, as witnessed by their
effects on downstream effectors (see Table 1 and below).

While there is much compelling evidence that proves the
involvement of Gq/11 and G12/13-activated signalling path-

ways in cell cycle control (discussed in more detail
below), direct experimental evidence of the GPCR activa-
tion of these G proteins for the purposes of cell cycle con-
trol is generally absent. A notable exception, however, is a
study of NIH3T3 fibroblasts transfected with Gα12. In the
presence of LPA, these cells synthesize DNA and prolifer-
ate much more rapidly than untransfected cells, indicating
that the LPA effects are mediated by the LPA receptor cou-
pled to Gα12 [20].

cAMP/PKA/CREB
Cyclic AMP (cAMP) is generated from ATP by the AC fam-
ily of enzymes. ACs are activated by Gαs subunits while
most isoforms are inhibited by Gαi/o subunits. Gβγ dimers
can either negatively or positively regulate AC isoforms.
cAMP activates protein kinase A (PKA), which not only
phosphorylates transcription factors, including the cAMP
response element binding protein (CREB) and AP1 family
members, but also modulates the activity of other signal-
ling pathways (Fig. 1 and [21]).

Parathyroid hormone (PTH) receptor activation in UMR-
106 osteoblast cells inhibits the progression of cells into S
phase. This blockage is accompanied by increases in
p27Kip1, an inhibitor of the cyclin-CDK complexes neces-
sary for the G1 to S phase transition [7]. As PTH is a Gs-
coupled receptor, a cell permeable cAMP analogue mim-
icked the effects of PTH while a PKA inhibitor abolished
the increases in p27Kip1 levels [22]. In complete contrast,
activation of the thyroid stimulating hormone (TSH)
receptor, also Gs-coupled, induced G1 to S phase progres-
sion in rat thyroid cells. The TSH-induced progression and
increased DNA synthesis was associated with increases in
the levels of c-Fos [23], a binding site for which is found
in the promoter region of cyclin D1 [14], as well as
increases in the levels of two G1 cyclins, D1 and E [24].
These effects were mimicked by a cAMP analogue [24] and
cells containing a dominant negative mutant of CREB,
which also activates the cyclin D1 promoter, had reduced
levels of TSH-induced DNA synthesis and an increased
cell cycle length [25]. Similarly, estrogen and 17β-estra-
diol (E2) are thought to act, in part, as ligands for the
orphan GPCR GPR30 [26]. The E2-induced proliferation
of keratinocytes is accompanied by increases in the levels
of cyclin D2, a key mediator of G1 to S phase progression
in skin cells [27], and increases in the activity of cyclin D2-
CDK4 or 6 complexes [28]. E2 increased the amount of
active CREB, a transcriptional activator of the cyclin D2
gene, and this, as well as the increased levels of cyclin D2
and proliferation, were reversed by a PKA inhibitor [28].

Due to the differential expression patterns and levels of
AC isoforms, the multiplicity of phosphodiesterases that
can degrade cAMP and the regulation of ACs by Ca2+/cal-
modulin and a variety of kinases [21], it is perhaps not
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Table 1: GPCR-mediated activation of signalling pathways leading to cell cycle modulation

Intracellular Pathway Cell Cycle Effect References

GPCR

Gi/o-coupled

α1-adrenergic ↑DNA synthesis [15]

↑Src/C3G/Rap-1/B-Raf/ERK ↑Proliferation [77]

Adenosine A3 ↑PI3K/Akt/↓ERK ↓Proliferation [98]

CXCR1/2 ↑MMP/EGFR/ERK ↑Proliferation [40]

CXCR3 ↑ERK, ↑p38 ↑DNA synthesis [99]

CXCR4 ↑Pyk2/PI3K/ERK ↑DNA synthesis [71]

Dopamine D2 ↑PKC/NF-κB ↑p21Cip1, ↑p27Kip1 [60]

↑Src/C3G/Rap-1/B-Raf/ERK ↑Proliferation [77]

Dopamine D4 ↑Src/SHC/Ras/ERK ↑DNA synthesis [78]

Sphingosine 1-phosphate EDG-1 ↑p70rsk ↑Cyclin D1 [96]

↑PDGFβ/ERK ↑Proliferation [100]

κ-opioid ↑PLC/PKC/Ras/ERK ↑DNA synthesis [16]

Lysophosphatidic acid LPA ↑DNA synthesis [17]

Melatonin MT1 ↓ERα/glucocorticoid receptor ↓Cyclin D1 [12, 13]

Serotonin 5HT1E ↑Src/C3G/Rap-1/B-Raf/ERK ↑Proliferation [77]

Somatostatin SST1/4/5 ↑ERK ↑p21Cip1, ↑p27Kip1 [50]

Somatostatin SST2 ↑PI3K/Ras/Rap-1/B-Raf/ERK ↑p27Kip1 [90]

Somatostatin SST2a ↑p38 ↑p21Cip1 [91]

Somatostatin SST2b ↑PI3K/p70rsk/Akt ↑Proliferation [91]

Gs-coupled

Dopamine D1 ↑PLCβ/↓Raf-1 ↓Cyclin D1/↑p27Kip1 [101]

Glucagon-like peptide GLP-1 EGFR/PI3K ↑Proliferation [42]

Glucagon-like peptide GLP-2 ↑DNA synthesis [18]

GPR30 ↑PKA/CREB ↑Cyclin D2/CDK4-6 complex formation [27, 28]

Lysophosphatidic acid LPA ↑Proliferation [19]

Melanocortin MC5 ↑JAK/STAT ↑Proliferation [82]

Parathyroid PTH ↑cAMP/PKA ↑p27Kip1 [7, 22]

↑cAMP/Epac/Rap-1/B-Raf/ERK ↑Proliferation [51]

↑cAMP/↑PKA/↓Raf-1 ↓Proliferation [51]

↑MKP-1/↓ERK ↓Cyclin D1, ↑p21Cip1 [52]

Thyroid stimulating hormone TSH ↑cAMP/CREB/c-Fos ↑DNA synthesis, ↑Cyclins D1/E [14, 23-25]

↑PKA/Ras/PI3K ↑DNA synthesis [102]

Gq-coupled

α1B-adrenergic ↑PKC/Raf-1/ERK ↑Proliferation [34]

↑JNK, ↑p38 ↓Proliferation [55]

↑Src/Dbs/cdc42/MKK4/JNK ↓Proliferation [76]

↑Ras/Rac/JAK/STAT ↑Proliferation [81]

Angiotensin II ↑MMP/EGFR/ERK ↑Cyclin D1 [39]
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↑Ras/ERK/c-Fos/c-Jun ↑Cyclin D1, ↑pRB phosphorylation [48]

↑p125FAK/Rac1/JNK ↑Proliferation [67]

Bombesin ↑MMP/EGFR/PI3K ↑Cyclins D1/E [41]

↑PKD ↑Proliferation [58]

Bradykinin ↑MMP/EGFR/PI3K ↑Cyclins D1/E [41]

Endothelin ↑MMP/EGFR/ERK ↑DNA synthesis [39]

↑PLCβ/Ca2+/Src/ERK ↑Proliferation [74]

↑Src/Rho/p125FAK/paxillin ↑DNA synthesis [70]

↑Pyk2/ERK ↑DNA synthesis [70]

Gastrin-activated CCK2 ↑Rho/integrin/p125FAK/paxillin ↑Proliferation [68,69]

↑PKC/Src/p38 ↑Proliferation [75]

↑JAK/STAT ↑Proliferation [80]

Lysophosphatidic acid LPA ↑MMP/EGFR/ERK ↑cyclin D1 [39]

Muscarinic M1 ↑PKC/Raf-1/ERK ↑Proliferation [34]

Muscarinic M3 ↑JNK/c-Jun/SP-1 ↓DNA synthesis, ↑p21Cip1/CDK2, ↓pRb phosphorylation [56]

Muscarinic M5 ↑Ras/Rac/JAK/STAT ↑Proliferation [81]

Muscarinic subtypes ↑Src/ERK/CREB ↑DNA synthesis [103]

Platelet-Activating Factor receptor ↑MMP/EGFR/ERK ↑Proliferation [104]

Purinergic P2Y2/4 ↑PKC/Raf/MAPK ↑DNA synthesis [49]

Substance P (NK-1) ↑Src/PKCδ/ERK ↑Proliferation [72]

Thrombin ↑MMP/EGFR/ERK ↑DNA synthesis [39]

↑RhoA/PI3K/Akt ↓p27Kip1, ↑Cyclin D1/CDK4 [92-94]

↑ERK ↑CDK2 nuclear translocation [95]

↑PI3K/Akt,

Vasopressin V1A ↑PKD ↑Proliferation [58]

↑Ca2+/PI3K/PKC/ERK ↑G1-S phase [105]

↑EGFR/Pyk2/Src/ERK/PI3K ↑Proliferation [106]

G12/13-coupled

Lysophosphatidic acid LPA ↑DNA synthesis, ↑Proliferation [20]

↑EGFR/Rho/ROCK ↑Cyclins A/D1, ↑p21Cip1, ↓p27Kip1 [43,45]

↑JNK ↑Cyclin A [20,54]

A selection of examples is presented that demonstrate the involvement of GPCR-mediated intracellular signalling pathways in the regulation of cell 
cycle progression. ↑, indicates an increase in protein levels or activity; ↓, indicates a decrease in protein levels or activity.

Table 1: GPCR-mediated activation of signalling pathways leading to cell cycle modulation (Continued)
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surprising that activation of Gs-coupled receptors can lead
to contradictory effects on cell cycle progression depend-
ing on the cell type and GPCR studied (Table 1 and [14]).
It has been suggested that the differences may be the result
of different cAMP concentrations, with lower levels induc-
ing cyclin D expression whereas higher levels induce
p27Kip1 expression [28]. In addition, elevated levels of
cAMP and the activation of PKA results in cell type specific
modulation of MAPK pathways [29], while it is probable
that Gβγ subunits released from GPCR-activated Gs pro-
teins can activate MAPKs (Fig. 1 and [30]).

It is not yet clear whether Gi/o-coupled GPCR-induced
reductions in basal cAMP levels can independently affect

cell cycle progression but it is likely that intracellular
cAMP levels are the product of competing signals from Gs
and Gi/o proteins. There are examples of Gi/o-coupled
receptors modulating cell cycle progression, e.g. the mela-
tonin MT1 receptor-mediated inhibition of proliferation
in rat uterine cells [31], however these effects are likely to
be mediated by a variety of other intracellular pathways
(see following sections) rather than by the inhibition of
AC activity.

MAPK pathways
Mammalian cells express three major classes of MAPKs,
the extracellular signal-regulated kinases (ERK), c-Jun N-
terminal kinase/stress-activated protein kinases (JNK/

Modulation of intracellular cAMP levels by GPCR-coupled mechanisms affects cell cycle progressionFigure 1
Modulation of intracellular cAMP levels by GPCR-coupled mechanisms affects cell cycle progression. Agonist 
activation of Gs-coupled receptors promotes increased AC activity and cAMP accumulation. Subsequent PKA activation leads 
to the activation of the transcription factor CREB and the regulation of the expression of cyclins and the CDK inhibitor 
p27Kip1. The resulting effect on cell cycle progression is dependent on a number of factors, including the concentration of 
cAMP generated. PKA can also regulate, positively or negatively, other mitogenic pathways, particularly those leading to the 
activation of MAPKs, (see text for further details). Activation of the AC/cAMP/PKA axis can be antagonized by the activation of 
GPCRs coupled to Gi/o-family proteins. However, the definitive involvement of these MAPK and Gi/o-coupled pathways in reg-
ulating proliferation has not been established (indicated by dashed lines).
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SAPK) and p38 kinases, the activation of which results in
the stimulation of transcription factors and the regulation
of the expression of cell cycle proteins [32,33]. GPCRs
activate MAPKs via several distinct mechanisms, i.e. by
using β-arrestin/endocytotic pathways, transactivating
RTKs or by second messenger activation. The β-arrestin
pathway generally results in the retention of MAPKs in the
cytoplasm and transient MAPK activity, limiting their role
in the activation of nuclear substrates and proliferation
(discussed in [34]). However, GPCR activation of β-arres-
tin dependent pathways does not exclude the possibility
of sustained ERK activation [35] or of nuclear transloca-
tion of ERK activity and the promotion of proliferation, as
demonstrated for the neurokinin NK-1 receptor [36]. In
contrast, RTK-mediated and second messenger activation
of MAPK pathways generate the sustained MAPK activity
that is often thought critical to the GPCR regulation of cell
cycle progression [32].

RTK transactivation
It is often observed that GPCR-mediated proliferation is
the result of the Gα or Gβγ subunit transactivation of RTKs
[37,38]. Ligands for the LPA, endothelin-1 and thrombin
receptors all promote S phase entry and DNA synthesis in
Rat-1 fibroblasts by transactivating the epidermal growth
factor receptor (EGFR, an RTK). Such transactivation
requires the activation of matrix metalloproteases
(MMPs) to release EGF from its membrane bound form,
which then stimulates the EGFR and downstream ERK
pathways (Fig. 2 and [39]). The same study also demon-
strated that LPA and angiotensin II promoted cyclin D1
accumulation in the G1 phase of kidney cancer cells via
the same MMP/EGFR/ERK pathway [39], while a similar
proliferative pathway is activated by Gi/o-coupled CXCR1/
2 receptors in Caco-2 cells [40]. However, in Swiss 3T3
cells bradykinin and bombesin promote cyclin D1 and E
expression in mid to late G1 in an EGFR-dependent but
ERK pathway-independent manner [41]. This ERK-inde-
pendent pathway may involve the RTK activation of phos-
photidylinositol 3-kinase (PI3K)/Akt cascades (see below
and Figs. 2 and 6), as might the Gs-coupled GLP-1 recep-
tor promotion of proliferation in β-cells [42].

As for receptors acting via G12/13 heterotrimers, LPA recep-
tors stimulate Rho, a member of the Ras superfamily [43],
and its effector Rho kinase (ROCK; [44]) utilizing EGFRs.
This potentially leads to the stimulation of several signal
transduction pathways and the regulation of the levels of
cyclins A and D1 as well as the CDK inhibitors p21Cip1 and
p27Kip1 (Fig. 2 and [45]).

A number of other proliferation-inducing RTKs are also
transactivated by GPCRs (reviewed in [46]). It is not yet
clear whether activation of these RTKs requires GPCR-
induced cleavage of membrane-bound RTK ligands by

MMPs or whether this requirement can be bypassed by
the GPCR-induced Src family tyrosine kinase activation of
RTKs (Fig. 2 and [46]). It is also yet to be determined what
role GPCR/EGFR activation of JNK and p38 play in prolif-
erative responses [38]. It has, however, been reported that
Gi/o-coupled GPCR-induced JNK activity can be synergis-
tically increased upon EGF co-stimulation, although this
may not necessarily require transactivation [47].

Second messengers
GPCRs can also promote the MAPK-dependent transcrip-
tion of cell cycle proteins without transactivating RTKs
[33]. Mitogenic pathways activated by different Gα fami-
lies have been described in detail. Angiotensin II pro-
motes DNA synthesis and proliferation in many cell types
by activating the Gq-coupled AT1 receptor. AT1 receptor
activity in human adrenal cells induces Ras-dependent
ERK activity, leading to increased levels of c-Fos and c-Jun
transcription factors and increases in cyclin D1 promoter
activity, cyclin D1 protein levels and pRB hyperphospho-
rylation (Fig. 3 and [48]). Other mitogenic GPCRs,
including M1 muscarinic and α1B-adrenergic and puriner-
gic receptors, induce ERK activity via the Ras-independent
PKC phosphorylation and activation of Raf-1 [34,49].
However, there are reports of GPCRs using seemingly sim-
ilar ERK pathways to promote G1 phase arrest. For exam-
ple, several of the Gi/o-coupled somatostatin receptors
inhibit cell cycle progression in a variety of cell types by
promoting accumulation of the CDK inhibitors p27Kip1

and p21Cip1 (Fig. 3 and [50]).

Gs-coupled GPCRs utilize the Epac/Rap-1/B-Raf pathway
to activate MAPK cascades and proliferation. In bone cells
expressing B-Raf, PTH promotes cAMP accumulation,
which binds directly to the Rap-1 guanine nucleotide
exchange factor Epac. Epac in turn activates Rap-1, a Ras
family GTPase, which activates the kinase B-Raf, triggering
ERK cascades [51]. Alternatively, PKA may directly activate
Rap-1 (Fig. 3 and [34]). Interestingly, it now seems clear
that in cells lacking B-Raf, GPCR-mediated activation of
AC leads to the PKA phosphorylation and inhibition of
Raf-1 [34], and/or the antagonism of the Ras activation of
Raf-1 by Rap-1 [51]. Therefore, in cells with reduced levels
of B-Raf, Gs-coupled receptor activation leads to the inhi-
bition of the canonical Ras/Raf/ERK mitogenic pathway.
This inhibition may be reinforced by the induction of
MAPK phosphatase-1 (MKP-1), which dephosphorylates
and inactivates ERKs. In bone cells this may account for
the PTH-induced inhibition of the ERK-mediated expres-
sion of cyclin D1, arresting cells in G1 phase [52]. The
ability of Gi/o-coupled receptors to utilize Rap-1/B-Raf
pathways to modulate proliferation is not yet clear but the
potential for such a pathway to operate is apparent as
dopamine D2 receptors are able to use Go proteins as inter-
mediaries to activate B-Raf [53].
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The JNK and p38 kinases do not seem to be as commonly
involved in the transduction of GPCR-induced prolifera-
tive signals, yet JNKs do mediate the LPA-induced prolif-
eration of NIH3T3 cells transfected with Gα12 [20],
possibly via the induction of cyclin A at the G1-S phase
transition [54]. In fact, JNKs and p38 kinases seem adept
at mediating antiproliferative signals. In HEK293 cells,
α1B-adrenergic receptor stimulation inhibited cell prolif-
eration in a JNK- and p38-dependent manner [55]. In
Chinese hamster ovary cells, activation of the Gq-coupled
muscarinic M3 receptors caused a G1 phase arrest and
inhibited DNA synthesis by increasing the expression lev-
els p21Cip1. The p21Cip1 increased its association with
CDK2, leading to an accumulation of hypophosphor-
ylated pRB. M3 receptor activation promoted the activa-

tion of JNK and the phosphorylation of c-Jun. This
enhanced the interaction of c-Jun with its transcriptional
partner SP-1, possibly contributing to the enhancement of
p21Cip1 promoter activity (Fig. 3 and [56]).

Other PKC-dependent pathways
As well as its documented role in activating Raf-1 (see
above), PKC also acts as a key mediator of a number of
other GPCR-induced proliferative pathways. PKC iso-
forms, as well as DAG, are able to activate the protein
kinase D (PKD) family of serine/threonine kinases [57].
Indeed, the proliferation of Swiss 3T3 cells in response to
the activation of Gq-coupled bombesin or vasopressin
receptors is greatly potentiated by the overexpression of
PKD [58]. The pathways connecting GPCR activation to

GPCR transactivation of EGFR leads to the activation of multiple mitogenic pathwaysFigure 2
GPCR transactivation of EGFR leads to the activation of multiple mitogenic pathways. GPCR/G protein activity of 
many families of G protein promotes the activity of MMPs via PLCβ-dependent, or possibly Src-dependent (indicated by dashed 
lines – see text for further details), mechanisms. MMP activity releases EGF in its soluble form. The resulting EGFR activity pro-
motes the formation of a signalling complex and the activation of PI3K, MAPK and ROCK kinases in a GPCR and cell type spe-
cific manner. The increased expression of cyclins promotes progression into S phase, while the upregulation of CDK inhibitors 
p21Cip1 and p27Kip1 delays S phase entry. Dashed lines also identify the probable involvement of multiple, unidentified interme-
diates in the transcriptional regulation of cell cycle proteins.

Ras
βγ Gα

MMP

PLCβ

Src

EGFR

Shc

Grb

Sos

EGF EGF

G1 phase S phase

Cyclin
D1

Raf

ERK

Rho

ROCK

Cyclin
A

p21Cip1 p27Kip1

PI3K

See Fig. 6

GPCR
Page 7 of 15
(page number not for citation purposes)



Journal of Molecular Signaling 2007, 2:2 http://www.jmolecularsignaling.com/content/2/1/2
the control of cell cycle progression have not yet been out-
lined but it is known that PKD can activate ERK pathways
and phosphorylate c-Jun (Fig. 4 and [57]).

PKC also activates the NF-κB transcription factors by initi-
ating a series of phosphorylation and degradation events
[59]. In mouse embryonic cell lines expressing both
dopamine D1 (Gs-coupled) and D2 (Gi/o-coupled) recep-
tors, the administration of dopamine resulted in a PKC-
dependent increase in NF-κB DNA binding activity, along
with increases in the levels of p21Cip1 and p27Kip1 and an
inhibition of DNA synthesis [60]. However, in an embry-
onic fibroblast model NF-κB binds to and activates the
cyclin D1 promoter region, leading to G1 to S phase pro-
gression (Fig. 4 and [61]). Other GPCRs, including the Gi/

o-coupled µ-opioid receptor [62], the somatostatin SST2

receptor acting via Gα14 [63] and the adenosine A1 recep-
tor acting via Gα16 [64] also promote NF-κB activation.
This activity appears to be mediated by numerous intrac-
ellular pathways, including those dependent on PKC,
ERK, Src, PI3K, JNK, and PLCβ, although the role of Gi/o-
coupled receptor activation of these pathways in NF-κB
mediated cell cycle progression is yet to be investigated.

Src family tyrosine kinases
Members of this family of kinases are firmly embedded in
signal transduction pathways activated by diverse extracel-
lular stimuli [65]. They also play a significant role in the
crosstalk between many pathways. We have already seen
that Src kinases play a part in the GPCR-induced transac-
tivation of RTKs (see preceeding discussion and Fig. 2).
The GPCR/Src/RTK sequence of events is poorly under-

GPCR-mediated activation of MAPKs is also regulated by the generation of intracellular messengersFigure 3
GPCR-mediated activation of MAPKs is also regulated by the generation of intracellular messengers. GPCR 
activity leads to the activation of AC/cAMP and PLCβ/PKC second messenger pathways. cAMP directly, or via PKA, activates 
RAP-1/B-Raf/ERK pathways, and potentially inhibits Raf-1 activated ERK activity. The Gαq/PLCβ/PKC pathway promotes Ras/
Raf-1/ERK activity, and it is likely that Gq- and Gi/o-coupled GPCRs can activate JNKs and p38. The result of the interplay 
between these pathways is either proliferative or antiproliferative, depending on the expression of GPCRs and signalling inter-
mediates. Dashed indicators identify the probable involvement of multiple, unidentified intermediates.

MKP-1

βγβγβγβγ
Gααααi/o

G1 phase S phase

βγβγβγβγ Gααααs

B-Raf

Rap-1

Epac

βγβγβγβγ
Gααααq

PLCββββ

PKC

JNK p38

ERK

Raf-1
Ras

?

PKA

ATP

cAMP

AC

C-Jun

Cyclin

D1

Cyclin

A
p21Cip1p27Kip1

C-FosSP-1

GPCR GPCR GPCR
Page 8 of 15
(page number not for citation purposes)



Journal of Molecular Signaling 2007, 2:2 http://www.jmolecularsignaling.com/content/2/1/2
stood, involving either Gα or Gβγ subunit stimulation of
Src or Src-activating pathways [46]. GPCRs can also trans-
activate focal adhesion complexes consisting of integrin
heterodimers that act as extracellular matrix receptors. The
transactivation is Src-dependent and leads to the forma-
tion of a signalling platform that includes Src, the focal
adhesion kinase p125FAK or its homologue Pyk2, paxil-
lin, as well as the adaptor proteins required to promote
Ras family-dependent signalling pathways, particularly
those that use MAPKs and PI3Ks as intermediates
(reviewed in [66]). Angiotensin II utilizes just such a
p125FAK/Rac1/JNK pathway to promote the proliferation
of vascular smooth muscle cells [67]. Gastrin and other
neuropeptides, through their agonistic effect on Gq- and
G12/13-coupled GPCRs, are also thought to promote G1 to
S phase transition, in part, via their activation of similar
Rho/integrin/p125FAK/paxillin signalling complexes

[68,69]. This would include the endothelin receptors,
which promote DNA synthesis in primary astrocytes using
a combination of an adhesion dependent Src/Rho/
p125FAK/paxillin and an apparently Rho/adhesion-inde-
pendent Pyk2/ERK pathway [70]. The Gi/o-coupled
CXCR4 receptor promotes DNA synthesis via a Pyk2/
PI3K/ERK pathway (Fig. 5 and [71]).

In the absence of RTK transactivation, Src activity is
required for GPCR-induced proliferation of a number of
alternative pathways. The Gq-coupled substance P recep-
tor (NK-1) promotes the proliferation of human glioblas-
toma cells in a Src-dependent manner. Inhibition of Src
activity prevents the phosphorylation and activation of
PKCδ and ERK in these cells [72]. ERKs are known sub-
strates of PKCδ [73]. The mitogenic Gq-coupled endothe-
lin receptors activate ERKs via a Src-dependent pathway

Further PKC-dependent cell cycle regulationFigure 4
Further PKC-dependent cell cycle regulation. Gi/o-, Gs- and Gq-family coupled GPCRs can activate PLCβ and PKC activ-
ity via Gα or Gβγ subunits. Activated PKC can phosphorylate and activate PKD, leading to the activity of ERK-dependent pro-
liferative pathways. PKC is also able to initiate a series of events that promotes the transcriptional activity of NF-κB. NF-κB 
activates the promoter regions of cyclin D1 as well as those of p21Cip1 and p27Kip1, causing S phase entry or delay. Dashed indi-
cators identify the probable involvement of multiple, unidentified intermediates.
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that requires the Gαq-subunit activation of PLCβ and Ca2+

release [74]. A similar pathway was identified in CHO
cells expressing the gastrin-activated CCK2 receptor,
where proliferation was mediated by a PKC/Src activation
of p38 MAPK [75]. In contrast, the anti-proliferative
effects of the α1B-adrenergic receptor in HEK293 cells are
Src family kinase dependent. Such activity stimulates a
Rho family GEF, Dbs, and cdc42, a Rho family member,
activating a MAPK kinase, MKK4, and JNK (Fig. 5 and
[76]).

Other studies have shed light on the Gi/o-coupled GPCR
activation of Src-mediated proliferation. Serotonin 5HT1E,
dopamine D2 and α2C-adrenergic receptors all promote
the proliferation of NIH3T3 cells via the Gαi-subunit acti-
vation of Src, which activates C3G, a RapGEF. As was dis-

cussed above, RapGEFs, including Epac, activate Rap-1/B-
Raf/ERK pathways leading to proliferation (Fig. 5 and
[77]). Alternatively, the dopamine D4 receptor promotes
DNA synthesis via Src/Src homology 2-containing protein
(SHC)/Ras/ERK pathway [78]. The precise mechanism of
Gαi activation of Src is still under investigation but both
Gαi and Gαs directly bind to and activate Src family
kinases [79].

Activation of MAPKs is not the only consequence of the
GPCR-induced activation of Src family kinases. An
increasing number of GPCRs activate the Janus kinase/sig-
nal transducer and activator of transcription (JAK/STAT)
pathways as a means to modulate cell cycle progression.
The gastrin-activated CCK2, muscarinic M5 and α1B-adren-
ergic Gq-coupled receptors, as well as the Gs-coupled

Src family kinase-dependent cell cycle controlFigure 5
Src family kinase-dependent cell cycle control. Gq-, G12/13- and Gi/o-coupled GPCRs are all known to regulate mitogene-
sis via the transactivation of Src-dependent integrin signalling complexes. Gq- and Gi/o-coupled receptors also utilize Src to acti-
vate a variety of MAPK pathways. Gs-, Gi/o- and Gq-coupled receptors promote proliferation via the activation of the STAT 
transcription factors, and this has been postulated to be Src-dependent (shown in dashed lines). Full STAT activity may require 
phosphorylation by JAKs and MAPKs. Dashed lines also identify the probable involvement of multiple, unidentified intermedi-
ates in the transcriptional regulation of cell cycle proteins.
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melanocortin MC5 receptor induce increases in cell prolif-
eration by activating JAK and STAT family members [80-
82]. The definitive involvement of Src in these pathways
has not been established and it is possible that a combi-
nation of the direct activation by Src kinases and Ras-
dependent MAPK pathways is required for full STAT tran-
scriptional activation [83]. Interestingly, the promiscu-
ously coupled Gα14 and Gα16 subunits are similarly able
to mediate the activation of Src and JAK/STAT pathways
following activation of several GPCRs [84-86], although
whether this leads to the modulation of cell cycle progres-
sion is not yet known. The ability of Gαi/o subunits to pro-
mote the Src-mediated activation of STATs is well
documented [83]. What is less clear is the role of Gi/o-cou-

pled GPCRs in controlling cell cycle progression via these
pathways. Intriguingly, in NIH3T3 cells, Gαi2 mediates the
Src activation of STAT3, and this may promote the expres-
sion of cyclin D1 (Fig. 5 and [87]).

PI3K/Akt pathways
Extracellular signals transduced by both RTKs and GPCRs
converge upon the activation of a family of PI3Ks. Activa-
tion of these lipid kinases by GPCRs is thought to be
dependent on the direct binding of Gβγ subunits and Ras
to PI3Ks [88]. PI3K activation initiates a phosphorylation
cascade leading to the activation of Akt (also termed pro-
tein kinase B) and its downstream kinases phosphoi-
nositide-dependant kinase 1 (PDK1), glycogen synthase

Activation of PI3K-dependent cell cycle regulationFigure 6
Activation of PI3K-dependent cell cycle regulation. The expression, stability and activity of cyclins and CDK inhibitors 
are regulated by the activity of several PI3K-dependent pathways. Numerous GPCRs activate PI3K isoforms either through 
Gβγ subunits or via RTK and integrin transactivation. PI3Ks activate ERKs and Akt, leading to the transcriptional regulation of 
p27Kip1. In addition, Akt phosphorylates p27Kip1, thereby affecting its nuclear localization. Acting through TSC1, TSC2 and 
mTOR, Akt can negatively affect the stability of p27Kip1, although GPCR regulation of proliferation through mTOR has not 
been established (indicated by dashed lines). PI3Ks may also promote proliferation by promoting cyclin expression (via p70S6K) 
and stability (via Akt and GSK3). Dashed lines also identify the probable involvement of multiple, unidentified intermediates in 
the transcriptional regulation of cell cycle proteins.
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kinase 3 (GSK3), p70 ribosomal protein S6 kinase
(p70S6K), mammalian target of rapamycin (mTOR) and
others [89]. In addition, we have already seen how GPCRs
can activate PI3K pathways via RTK or integrin transacti-
vation [41,42,66]. Following direct or indirect GPCR-
induced PI3K activation, cell cycle progression is regu-
lated by the effect of PI3K-activated kinases on the expres-
sion and stability of cell cycle proteins, or by the
modulation of the activity of other signal transduction
pathways. For example, somatostatin SST2 receptors
expressed in Chinese hamster ovary cells (CHO) inhibit
proliferation by activating a PI3K-dependent Ras-Rap1/B-
Raf/ERK pathway, resulting in an increase in the levels of
p27Kip1 protein (Fig. 6 and [90]). It has also been shown
that sustained activation of p38 by activation of the SST2a
receptor subtype leads to upregulation of p21Cip1 and cell
cycle inhibition. However, this can be antagonized by
activation of SST2b receptor, which activates PI3K, p70S6K,
Akt and proliferation (Fig. 6 and [91]). This suggests that
the final outcome of a signalling event relies on the bal-
ance of several competing mechanisms.

Several studies have shed further light on the effect of the
activation of GPCR/PI3K pathways on cell cycle proteins.
For example, thrombin receptor activation in vascular
smooth muscle cells leads to reduced levels of p27Kip1 and
increased cellular proliferation [92], while in embryonic
fibroblasts the evidence suggests that thrombin receptor
activation of PI3K/Akt pathways promotes cyclin D1 accu-
mulation, cyclin D1-CDK4 activity and cell cycle progres-
sion [93,94]. Furthermore, it has been postulated that
thrombin receptor activation of ERK activity ultimately
leads to enhanced translocation of CDK2 into the nucleus
and fibroblast proliferation [95]. Moreover, sphingosine
1-phosphate activation of the EDG-1 receptor activates
p70S6K, promoting cyclin D1 expression and proliferation
(Fig. 6 and [96]). The reduction in p27Kip1 levels and the
upregulation of cyclin D protein are thought to be the pri-
mary cell cycle effects of PI3K activation by RTKs [89]. The
cyclin D1 protein is stabilized by the Akt-mediated inacti-
vation of GSK3, which normally phosphorylates and pro-
motes the degradation of cyclin D1. Akt also
phosphorylates and inactivates forkhead (FH) transcrip-
tion factors, which bind to and activate the p27Kip1 pro-
moter. PI3K pathways may also reduce the stability of
p27Kip1, and Akt phosphorylation of p27Kip1 adversely
affects its nuclear localization. Akt-induced phosphoryla-
tion of the tumour suppressor TSC2 (also known as
tuberin) causes the dissociation of TSC2 and TSC1 (also
known as hamartin), relieving their inhibition of mTOR
kinase. Increased mTOR activity reduces the stability of
p27Kip1 (Fig. 6 and [89]). Some GPCRs have now been
shown to couple to this PI3K/tuberin system [97],
although the significance for cellular proliferation has not
been established.

Conclusion
It is a common finding that GPCRs regulate cell cycle pro-
gression. The final effect on cellular proliferation is likely
to be the result of the combined action of different GPCRs
simultaneously activating several different G protein fam-
ilies, each of which affects the activity of multiple intracel-
lular signalling pathways that modulate the expression,
activity and stability of key proteins of the cell cycle
machinery. Restrictions on GPCR-induced effects may
arise from factors such as the expression and accessibility
of signalling components as well as the magnitude and
duration of the intracellular response. Yet to be studied in
depth is the combined effect of GPCR activation along
side the mitogenic effects of other classes of signalling
molecules. Nevertheless, there is much hope that the tar-
geted modulation of GPCR activity will reveal strategies
for the treatment of medical conditions that arise due to
deregulated cell growth and proliferation.
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