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Abstract
Seven members of the Mix family of paired-type homeoproteins regulate mesoderm/endoderm
differentiation in amphibians. In mammals, the MIXL1 (Mix. 1 homeobox [Xenopus laevis]-like gene
1) gene is the sole representative of this family. Unlike the amphibian Mix genes that encode an
open reading frame of >300 amino acids, mammalian MIXL1 encodes a smaller protein (~230aa).
However, mammalian MIXL1 contains a unique proline-rich domain (PRD) with a potential to
interact with signal transducing Src homolgy 3 (SH3) domains. Notably, human MIXL1 also contains
a unique tyrosine residue Tyr20 that is amino-terminal to the PRD. Here we report that
mammalian MIXL1 protein is phosphorylated at Tyr20 and the phosphorylation is dramatically
reduced in the absence of PRD. Our findings are consistent with Tyr20 phosphorylation of MIXL1
being a potential regulatory mechanism that governs its activity.

Background
Mix. 1, a paired-like homeobox gene, was initially identi-
fied as an inducer of ventral mesoderm and/or endoderm
in Xenopus [1,2]. Subsequently, several closely related
genes, Mix 2–4, Bix 1–4, and Mixer, were isolated and
found to regulate mesoderm and/or endoderm formation
[3-6]. However, in chicken (CMIX), mice (MIXL1/Mml)
and humans, the Mix-like homeobox (MIXL1) genes
appear to be single copies [7-12]. Additionally, mamma-
lian MIXL1 encodes a smaller protein of ~230 amino
acids, in contrast to the ~340 amino acid proteins
encoded by the Xenopus genes. Nonetheless, almost all of
the Mix family members are modular with a highly con-
served paired-type homeodomain and a conserved car-
boxy-terminal acidic domain (CAD). A distinguishing
feature of CMIX, Mml/MIXL1 and human MIXL1 is the
presence of proline-rich domains (PRD). Both mouse and
human MIXL1 contain an amino-terminal PRD between
residues 31–60; in chicken however, the PRD appears to

be carboxyl to the homeodomain raising the possibility
that the function of this domain may be modular.

The Xenopus Mix/Bix genes are expressed in ventral meso-
derm and/or endoderm [1,3-6]. Similarly, the expression
of mouse Mml/MIXL1 or chicken CMIX initially occurs in
visceral endoderm and, becomes restricted to primitive
streak and nascent mesoderm at gastrulation; in mice, this
includes the hemangioblast, a precursor of hematopoietic
and vascular stem cells [9-14]. The expression of human
MIXL1 is restricted to progenitors and secondary lymph
tissues in adults [8]. The temporal and spatial expression
pattern of Mix-like genes suggests that these genes are
tightly regulated during embryonic development and
hematopoietic differentiation. The MIX family appears to
be regulated by at least three signaling pathways: TGFβ/
Activin/BMP, FGF, and p53 [2-4,6,15-19].

A role for the Mix gene family in development is suggested
by both gain-and loss-of-function experiments. Xenopus
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Mix.1 gene is implicated in the process of patterning ven-
tral mesoderm to hematopoietic fate induced by BMP-4
[15] and in endoderm development by synergizing with
other regulatory molecules such as Siamois [2]. Similar to
Mix.1, ectopic expression of human MIXL1 induced
embryonic hematopoiesis in Xenopus animal caps[8].
Homozygous disruption of mouse Mml/MIXL1 resulted
in a marked thickening of the primitive streak, severe
defects in paraxial mesoderm, and absence of heart tube
and gut [20]. In vitro ES differentiation assays further dem-
onstrated that murine Mml/MIXL1 to be BMP4 responsive
and required for efficient hematopoiesis [14].

In contrast to the developmental studies on this gene fam-
ily, nothing is known about biochemical pathways regu-
lating mammalian MIXL1. Absence of multiple family
members coupled with the gain of PRD in mammals,
raises a number of mechanistic possibilities for similar
cell fate or differentiation pathways regulated in amphib-
ians and mammals. One of these may be tissue- or devel-
opmental stage-specific phosphorylation of MIXL1 that
may mimic the diverse regulatory functions by multiple
members in Xenopus. In this report, we show that mam-
malian MIXL1 protein is readily phosphorylated at the
amino terminal tyr20. Tyr20 phosphorylation of MIXL1,
a potential regulatory mechanism governing its activity is
dramatically reduced in the absence of PRD.

Materials and methods
Plasmid construction and mutagenesis
The full-length human MIXL1 ORF, ∆CAD mutants with
truncation of carboxy-terminal acidic domain and ∆N25
mutant with truncation of both amino-terminal 25 bp
region and carboxy-terminal acidic domain were ampli-
fied by PCR and cloned into expression vectors CMV5 (a
kind gift from David W. Russell, UTSW at Dallas, TX) and
CMV2-flag (Sigma, St. Louis, MO) to generate CMV5-
MIXL1, CMV2-Flag-MIXL1, CMV5-∆CAD, CMV2-flag-
∆CAD and CMV2-flag-∆N25. The amino terminal of
CMV2-flag-∆CAD was replaced with the 1–93 bp amino-
terminal portion of MIXL1 to generate the construct
CMV2-flag-∆PC lacking both PRD and CAD domains.
Y110F mutation was introduced by PCR with a primer
containing an A-to-T (Tyr-to-Phe) point mutation. The
MIXL1 carboxy-terminal portion (301–699) of the con-
struct CMV2-flag – ∆CAD or CMV2-flag-∆N25 was
replaced with the amplified MIXL1 fragments carrying the
A-to-T point mutation to generate the construct CMV2-
flag-Y110F or CMV2-flag-∆2Y. Accuracy of the generated
constructs was confirmed by double stranded sequencing.

Cell culture and transfection
HEK 293T cells were grown in modified Eagle's medium
(MEM, Invitrogen) supplemented with 10% FBS, 0.1 mM
non-essential amino acids and 1 mM sodium pyruvate

(Invitrogen) at 37°C in 10% CO2. For transfection, cells
were plated at a density of 2 × 105 cells per well in a 6-well
plate 2 days prior to transfection. The transfections were
performed using LipofectAmine (Invitrogen) according to
the manufacturer's protocols. Total amount of transfected
DNA was adjusted to 1 µg per well by using appropriate
parental vectors. Cells were harvested for nuclear extrac-
tion 48 hours after transfection. For immunoprecipitation
experiments, the transfections were scaled up to 100 mm
plates.

Immunoprecipitation and immunobloting
Nuclear extracts were prepared from transfected 293T cells
[8] and diluted to approximately 1.0 µg protein/µL lysate.
Briefly, 500 µL of the fresh nuclear extracts were pre-
cleared with 50 µL of protein-A-agarose bead slurry (50%
v/v, Roche, Indianapolis, IN) at 4°C for 30 minutes in an
orbital shaker. After centrifugation at 14,000 × g at 4°C for
10 minutes, supernatant was mixed with 5 µg of the
murine monoclonal antibody 4G10 (Upstate) or the iso-
typic control (murine monoclonal antibody against the
V5 epitope-Invitrogen) at 4°C overnight on the orbital
shaker. The immune-complexes were captured by adding
50 µL of protein A agarose bead slurry (50% v/v) and gen-
tly rocking on the orbital shaker at 4°C for 2 hours. After
pulse centrifugation at 14,000 rpm for 8 seconds, the
immunecomplex-protein-A-agarose-bead pellets were
collected and washed 5 times with 800 µL of ice-cold
modified radioimmunoprecipitation (RIPA) buffer (50
mM Tris-HCl [pH 7.4]; 150 mM NaCl; 1% NP-40; 0.25%
sodium deoxycholate; 1 mM EDTA; 1 mM PMSF; 2 µg/mL
leupeptin; 2 µg/mL pepstatin A; 2 µg/mL aprotinin; 500
µg/mL benzamidine; 1 mM Na3VO4; 1 mM NaF) and
once with 800 µL ice-cold 1× PBS. The pellets containing
immune complexes were resuspended in 60 µL of 2× sam-
ple buffer (100 mM Tris-HCl [pH 6.8], 200 mM DTT, 4%
SDS, 0.2% Bromophenol Blue, 20% Glycerol).

Immunoprecipitates or nuclear proteins were resolved
(50 µg of protein per lane) on pre-cast 10% NuPAGE gels
(Invitrogen). After electrophoresis, the proteins were
transferred to Hybond P nylon membrane (Amersham
Biosciences, Piscataway, NJ) at 30 V overnight. The proto-
col for immunobloting was essentially as detailed else-
where [21]. Rabbit polyclonal antibody anti-MIXL1-N [8]
was used at a dilution of 1:100 initially or 1:500 for
immunoblotting studies. Mouse monoclonal antibody
anti-flag M2 (Sigma) 1:300; mouse monoclonal antibody
4G10 (Upstate) 1:3000 or 1:4000.

Alkaline phosphatase treatment
Nuclear extracts of HEK 293T cells transfected with
CMV5-MIXL1 was prepared without the addition of phos-
phatase inhibitors sodium fluoride and sodium
orthovanadate. Immediately after extraction, 15 µg of
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nuclear protein was incubated with 40 units of calf intes-
tine alkaline phosphatase (CIAP, Roche) in a 20 µL reac-
tion for 30 minutes at 30°C. As a control, the same
reaction was performed in the presence of 100 mM
sodium orthovanadate, which inhibits CIAP activity. In
addition, a mock reaction was also performed with no
CIAP. The reactions were terminated with NuPAGE sam-
ple buffer (Invitrogen). The changes in protein mobility
were determined by probing the immunoblots with the
anti-MIXL1-N antibody.

Results and discussion
MIXL1 is phosphorylated at multiple sites
When the full-length MIXL1 expression driven under
CMV promoter in the construct pCMV5-MIXL1 was tested
by transient transfection into the HEK cell line 293T, we
detected at least three species for MIXL1 proteins in
nuclear extracts by immunobloting with the anti-MIXL1-
N antibody. Similar experiments with other expression
constructs containing full-length or truncated MIXL1 also
detected at least two species for MIXL1 proteins. To test
the possibility that the multiple bands were the MIXL1
proteins modified by phosphorylation, the nuclear
extracts were treated with alkaline phosphatase (CIAP) to
remove phosphate groups from phosphorylated proteins.
MIXL1 proteins were detected by immunobloting with
the anti-MIXL1-N antibody. As shown in Fig. 1, the anti-
body specifically recognized four species for MIXL1 in
untreated nuclear extracts. However, the CIAP treatment
resulted in the disappearance of two species, α and β at the
top and greatly intensified the signals of the lower two
bands (γ and δ). Interestingly, the addition of the phos-
phatase inhibitor orthovanadate restored the four species
of MIXL1 proteins on the blot, demonstrating that the two
slower isoforms of MIXL1 are phosphatase sensitive. The
slowest migrating species of MIXL1 proteins (α) was also
lost in the mock reaction without addition of CIAP. The
loss could be due to endogenous phosphatase activity
from nuclear extracts, as phosphatase inhibitors were not
used in both the nuclear extraction and the mock reaction.
Together, the phosphatase-sensitive properties indicated
that MIXL1 protein is phosphorylated at multiple sites.

MIXL1 is tyrosine phosphorylated
A phosphorylation prediction program called Netphos
2.0 in the public domain [22] was used to search for
potential phosphorylation sites in the MIXL1 protein
sequence. By comparing the MIXL1 protein sequence with
phosphorylation consensuses for known kinases, the pro-
gram predicted 14 potential phosphorylation sites includ-
ing 10 serine residues, 3 threonine residues and 1 tyrosine
residue. Since only one tyrosine residue out of two
showed potential for phosphorylation, we chose to exam-
ine tyrosine phosphorylation first. The phosphotyrosine
antibody 4G10, which can specifically detect the tyrosine-

phosphorylated proteins, was used to see if MIXL1 is tyro-
sine phosphorylated. Nuclear extracts prepared from the
293T cells transfected with the constructs pCMV5-MIXL1
(Full-length MIXL1) and pCMV5-∆CAD (CAD-deleted
mutant, ∆CAD) was loaded in duplicate for immunoblot-
ing. One half of the blot was hybridized with the antibody
4G10 and the other half with the MIXL1-specific antibody
to show protein integrity and the relative position of
MIXL1 on the blot. As shown in Fig. 2, the phosphotyro-
sine antibody 4G10 detected a weak band in the nuclear
extracts from the cells with the full-length MIXL1, which
was not present in the nuclear extracts with the control
vector. The weak species was at a position similar to that
of the MIXL1 proteins detected with the anti-MIXL1-N
antibody, suggesting that the MIXL1 might be tyrosine
phosphorylated in HEK 293T cells. Consistent with this
possibility, the phosphotyrosine antibody detected a
unique band of much stronger intensity at a position cor-
responding to mutant ∆CAD, demonstrating that the
deletion of the CAD domain might result in increased
tyrosine phosphorylation on MIXL1 proteins, possibly
due to enhanced stability or easier access to the phospho-
rylation site(s).

The detection of tyrosine phosphorylation by immunob-
loting with the phosphotyrosine antibody could not rule
out the possibility that the antibody 4G10 was bound
non-specifically to the abundant MIXL1 proteins overex-
pressed in 293T cells. To address this possibility, we exam-
ined if MIXL1 proteins could be immunoprecipitated with
the antibody 4G10, which specifically binds to phospho-
tyrosine residues. The anti-MIXL1-N antibody detected a
weak but specific signal for full-length MIXL1 proteins in
the immunoprecipitates with 4G10 (Lane 1, 2 and 3 in
Fig. 3). Similarly, the mutant ∆CAD was specifically
immunoprecipitated with the phosphotyrosine antibody
4G10 (Lane 4, 5 and 6 in Fig. 3). The results demonstrated
that the phospho-tyrosine antibody specifically recog-
nized some MIXL1 proteins in nuclear extracts. The
immunoprecipitation analysis further confirmed that
MIXL1 was tyrosine phosphorylated in 293T cells.

Amino terminal Tyr20 is phosphorylated
MIXL1 contains only two tyrosine residues. Of these, one
is in the amino-terminal domain (Tyr20) and the other is
in homeodomain (Tyr110). Therefore, it is easy to deter-
mine the tyrosine phosphorylation site(s) in MIXL1 by
mutational analysis. Since the mutant ∆CAD showed a
much stronger signal for tyrosine phosphorylation than
the full-length MIXL1 in western blotting with the anti-
body 4G10, it was employed in mutation analysis. Based
on the ∆CAD mutant sequence, we generated 3 MIXL1
mutants with either a point mutation on the residue
Tyr110 or a small amino-terminal deletion including
Tyr20 or both (Fig. 4A). Since the antibody anti-MIXL1-N
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Alkaline Phosphatase treatment of nuclear extracts alters the mobility of MIXL1 proteins on SDS-PAGE gelFigure 1
Alkaline Phosphatase treatment of nuclear extracts alters the mobility of MIXL1 proteins on SDS-PAGE gel. 
Expression plasmid pCMV5-MIXL1 was transiently transfected to HEK 293T cells and the transfectants were harvested 60 
hours later. 15ug of fresh nuclear extracts were treated with 40u calf intestine alkaline phosphatase (CIAP) in the absence or 
presence of phosphatase inhibitor sodium orthovanadate at 30°C for 15 min. After CIAP treatment, nuclear extracts with 
orthovanadate and CIAP reactions were resolved on a NuPAGE gel and transferred to a PVDF membrane. Immunobloting was 
done with anti-MIXL1-N (1:350 dilution). Anti-MIXL1-N detected 4 species on lane 1 (nuclear extracts with orthovanadate and 
no CIAP treatment). The band α disappeared on mock reaction (lane 2). CIAP treatment resulted in disappearance of both 
band α and β (lane 3). In contrast, the addition of phosphatase inhibitor orthovanadate protected the all the 4 species (lane 4).
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could not detect the amino-terminally deleted mutant
proteins, a small epitope Flag was added in frame to the
amino-terminal ends of all the three mutants as well as
the mutant ∆CAD (Fig. 4A). Nuclear extracts from the
293T cells transfected with the four constructs were pre-
pared for immunobloting with the antibody 4G10. The
same blot was stripped and rehybridized with the mouse
monoclonal anti-Flag antibody, which detects the Flag
epitope. Surprisingly, the antibody 4G10 detected tyro-
sine phosphorylation on the mutant Flag-Y110F contain-
ing the single tyrosine residue Tyr20, similar to that on the

mutant Flag-∆CAD (renamed as Flag-2Y here) with both
tyrosine residues (Fig. 4B). In contrast, the antibody 4G10
failed to detect tyrosine phosphorylation on the amino-
terminal deletion mutant Flag-∆N25 containing the single
tyrosine residue Tyr110 as well as the mutant Flag-∆2Y
lacking both tyrosine residues, although the protein levels
for the four constructs were similar in the nuclear extracts
(Fig. 4B). Moreover, the same pattern was detected in the
COS-1 cells transfected with those four constructs (data
not shown). Thus, these observations suggested tyr20 to
be the target of phosphorylation in HEK 293T cells,

MIXL1 is phosphorylated on tyrosine residuesFigure 2
MIXL1 is phosphorylated on tyrosine residues. Nuclear proteins were extracted from 293T cells transiently transfected 
with constructs pCMV5-MIXL1 and pCMV5-∆CAD. Equal amounts of nuclear extracts (10 µg for CMV5 control and MIXL1 
and 5 µg for ∆CAD) were loaded in duplicate into a NuPAGE gel and transferred to PVDF membranes. The blot was divided 
into two halves and hybridized with either anti-MIXL1-N (1:100) or anti-P-Tyr (mouse monoclonal antibody 4G10 at 1:4000). 
Anti-MIXL1-N antibody detected two species in transfectants expressing full-length MIXL1 and a strong fuzzy band in trans-
fectants expressing the C-terminal truncation. The second half of the blot probed with 4G10 detected a weak but specific sig-
nal (arrow) corresponding to the slower migrating form of full-length MIXL1 and a robust signal (arrow) for the C-terminal 
truncation.
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although this is inconsistent with the prediction by the
program Netphos2.0. Whether tyr20 is phosphorylated
on endogenous MIXL1 proteins remains to be confirmed.

Absence of PRD causes a marked reduction in tyrosine 
phosphorylation
Recent studies reveal that the substrate proteins for phos-
phorylation often contain a docking domain to recruit
specific protein kinases [23]. In some instances, the PRD
in substrate proteins may compete against the auto-inhib-
itory interaction between the SH3 domain and catalytic
domain, by interacting with SH3 domain in protein
kinases such as Src [24]. Since the human MIXL1 contains
a PRD immediately downstream of the residue Tyr20 (11
residues downstream from the residue Tyr20), we postu-
lated that the PRD in human MIXL1 might be involved in
tyrosine phosphorylation. Thus, we examined the tyro-
sine phosphorylation on PRD-deleted MIXL1 proteins.
Since ∆CAD mutant shows stronger signals for tyrosine

phosphorylation, a construct containing the mutant
MIXL1 gene with the double deletion of PRD and CAD
domains (∆PC) was generated and transfected into 293T
cells. The tyrosine phosphorylation of the mutant ∆PC
was determined by immunobloting with the antibody
4G10. As shown in Fig. 5, the tyrosine phosphorylation
on the mutant ∆PC was much weaker than that of the
mutant ∆CAD, suggesting that the PRD, although not
absolutely necessary for Tyr20 phosphorylation, may be
important for either achieving full-scale phosphorylation
or maintaining the phosphorylation state by preventing
dephosphorylation. Future studies with antibodies spe-
cific for the Tyr20 phosphorylated protein will elucidate
how and when the phosphorylation occurs. More impor-
tantly, it will be critical to examine phosphorylation of
endogenous MIXL1 in hematopoietic tissues and breast
cancer cells. Thus the present report is a first step in eluci-
dating the potential function of the PRD and Tyr20, fea-
tures unique to avian and mammalian MIXL1.

Immunoprecipitation of phosphorylated MIXL1 by anti-phosphotyrosine antibody 4G10Figure 3
Immunoprecipitation of phosphorylated MIXL1 by anti-phosphotyrosine antibody 4G10. Expression constructs 
pCMV2-flag-MIXL1 and pCMV2-flag-∆CAD were transfected into HEK 293T cells. 500 µL of nuclear proteins (1µg/µL) from 
the transfected cells were precleared with 50 µL protein-A-agarose bead slurry (50%v/v) and incubated with 5 µg of the phos-
photyrosine-specific antibody 4G10 or the antibody anti-V5 as an isotypic control overnight. The immune complexes were 
precipitated with 60 µL protein-A-agarose bead slurry (50%v/v). Washed pellets were dissociated and resolved in a NuPAGE 
gel for immunobloting with the antibody anti-MIXL1-N (1:500). The immunoprecipitation and immunobloting for full-length 
MIXL1 is shown in the left panel, while mutant ∆CAD in the right panel. A small fraction of both full-length MIXL1 and mutant 
∆CAD were immunoprecipitated with the antibody 4G10 (Lane 2 or 6) but not with an isotypic control antibody anti-V5 (Lane 
3, or 7). Supernatants from the immunoprecipitation reactions denoted by (-) show the integrity of proteins. A strong band 
below full-length MIXL1 appeared to be non-specific, as it was also present in the controls. The blot on the left (lanes 1, 2, 3) 
was exposed to a Kodak film for 30 seconds, while the blot on the right (lanes 4, 5, 6) was exposed for only 5 seconds.
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MIXL1 is phosphorylated on Tyr20Figure 4
MIXL1 is phosphorylated on Tyr20. A) Cartoon depicting MIXL1 constructs generated for mutational analysis. Three 
MIXL1 mutant constructs were derived from the ∆CAD mutant construct pCMV2-flag-∆CAD (renamed as Flag-2Y in this fig-
ure). Each mutant in the constructs has a Flag epitope (a solid gray bar) attached in frame to the amino-terminus and contains 
either tyr20 or tyr110 or none as illustrated. B) Detection of tyrosine phosphorylation. The mutant constructs were tran-
siently transfected into HEK 293T cells. 10 µg of nuclear proteins from the transfectants were resolved on a NuPAGE gel. 
Tyrosine phosphorylation was examined by immunobloting with monoclonal antibody 4G10 (1:3000). The blot was stripped 
and re-probed with mouse monoclonal antibody anti-flag (1:300). Tyrosine phosphorylation was detected in both the mutant 
Flag-2Y and the mutant Flag-Y110F but not in the mutant Flag-∆N25 as well as the mutant Flag-∆2Y. The results are consistent 
with Tyr20 being the target of phosphorylation.
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Since MIXL1 localizes to the predominantly to the nucleus
(Guo and Nagarajan unpublished results), the kinase(s)
responsible for tyrosine phosphorylation on MIXL1 is
likely to be localized in the nucleus. Ten out of the 90
tyrosine kinases encoded in humans, are known to local-
ize to the nucleus (reviewed by Cans et al [25]). Thus the
likely candidates are c-ABL1, Wee1, FRK, LYN, FES family
(FES and FER) and JAK family (JAK1, JAK2, JAK3, and
TYK2). Although the present studies were conducted in
HEK293 cells, several of these kinases are expressed in the
hematopoietic system. Additionally, since the tyrosine
phosphorylation of MIXL1 was not examined in cyto-
plasm, we could not rule out that MIXL1 is tyrosine phos-
phorylated in the cytoplasm and translocated into the
nucleus.

Unlike serine/threonine phosphorylation, tyrosine phos-
phorylation on homeodomain proteins is rarely reported
to date. Hence the role of tyrosine phosphorylation in the
regulation of homeodomain proteins largely remains
unclear. The only reported case is the tyrosine phosphor-

ylation of HoxA10 during interferon γ-induced myeloid
differentiation. In this case, interferon γ-induced differen-
tiation led to HoxA10 tyrosine phosphorylation in the
myelomonocytic cell line U937, which decreased DNA
binding of HoxA10 to Pbx-HoxA10 binding sites [26].
However, SHP1 protein-tyrosine phosphatase (SHP1-
PTP), which antagonizes myeloid differentiation,
decreased tyrosine phosphorylation of HOXA10 homeo-
domain thereby enhancing HOXA10-mediated repression
[27].

A tissue- or cell cycle-specific phosphorylation may alter
MIXL1 activity. Future studies will elucidate whether
phosphorylation mediated protein-protein interactions
due to the unique PRD in human, mouse and chicken
Mix-like proteins indeed substitutes for the functional
diversity achieved by multiple members in Xenopus Laevis.
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Tyr20 phosphorylation is diminished in the absence of PRDFigure 5
Tyr20 phosphorylation is diminished in the absence of PRD. The constructs pCMV5-∆CAD and pCMV5-∆PC (lacking 
both the CAD and PRD) were transfected into HEK 293T cells. 15 µg of the nuclear extracts from the transfectants were 
resolved on a 10% NuPAGE gel. Tyrosine phosphorylation was detected by immunobloting with monoclonal antibody 4G10. 
The same blot was stripped and reprobed with anti-MIXL1-N antibody (1:400). Compared to the vector control, the antibody 
4G10 detected a weak signal for the ∆PC mutant, although it is much weaker than that for ∆CAD mutant with the intact PRD 
domain. V-Vector.
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