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Identification of endoglin-dependent BMP-2-
induced genes in the murine periodontal
ligament cell line PDL-L2
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Abstract

Background: The periodontal ligament (PDL), connective tissue located between the cementum of teeth and
alveolar bone of the mandibula, plays an important role in the maintenance and regeneration of periodontal
tissues. We reported previously that endoglin was involved in the BMP-2-induced osteogenic differentiation of
mouse PDL cells, which is associated with Smad-2 phosphorylation but not Smad-1/5/8 phosphorylation. In this
study, to elucidate the detailed mechanism underlying the BMP-2 signalling pathway unique to PDL cells, we
performed a microarray analysis to identify BMP-2-inducible genes in PDL-L2 cells, a mouse PDL-derived cell line,
with or without endoglin knockdown.

Findings: Sixty-four genes were upregulated more than twofold by BMP-2 in PDL-L2 cells. Of these genes, 11 were
endoglin-dependent, including Id4, which encodes ID4, a helix-loop-helix transcription factor closely associated with
TGF-β signaling and osteoblast differentiation. The endoglin-dependent induction of ID4 by BMP-2 was also verified
at a protein level.

Conclusion: Our findings indicate that ID4 could be a signal mediator involved in the BMP-2-induced
endoglin-dependent osteogenic differentiation of PDL cells.
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Findings
Background
The periodontal ligament (PDL), unmineralised connect-
ive tissue rich in neural and vascular components, joins
the cementum surrounding the tooth root to the alveolar
bone. Besides its supportive function as a mediator be-
tween tooth and bone, the PDL serves as a shock absorber
to provide resistance against strong forces loaded onto
teeth. The PDL is also involved in the regeneration of peri-
odontal tissues, including its own and alveolar bone [1,2].
Previously, we successfully established an immortalised
mouse PDL-derived cell line, designated as PDL-L2, which
exhibits a gene expression profile indistinguishable from
that of most PDL fibroblastic cells in vivo [3]. Despite ex-
pressing typical preosteoblastic markers such as Runt-
related transcription factor 2 (RUNX2) and type I

collagen, PDL-L2 cells lacked the capacity to form minera-
lised nodules in osteogenic differentiation medium via a
mechanism involving muscle segment homeobox 2 as a
molecular defence against mineralisation [3,4]. However,
in the presence of a strong differentiation inducer such as
bone morphogenetic protein (BMP)-2, the cells acquire
mineralisation capacity [3]. These results indicate that
PDL cells can potentially differentiate into osteoblastic
cells, whereby osteoblasts are recruited from the PDL if
necessary (i.e., during tissue regeneration), although the
tissue itself is unmineralised.
Furthermore, we previously reported that endoglin is in-

volved in the BMP-2-induced osteogenic differentiation of
PDL cells [5]. Endoglin was identified as a cell-surface
glycoprotein in an acute lymphoblastic leukaemia cell line
[6], and later it was demonstrated to be an accessory re-
ceptor for transforming growth factor-β (TGF-β) [7,8].
Genetic studies revealed that mutations in the endoglin
gene lead to an autosomal–dominant disorder designated
hereditary haemorrhagic telangiectasia type 1 [9,10].

* Correspondence: ishibashi@biochem.osakafu-u.ac.jp
Laboratory of Biological Macromolecules, Graduate School of Life and
Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho,
Naka-ku, Sakai 599-8531, Japan

© 2014 Ishibashi and Inui; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public
Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this
article, unless otherwise stated.

Ishibashi and Inui Journal of Molecular Signaling 2014, 9:5
http://www.jmolecularsignaling.com/content/9/1/5

mailto:ishibashi@biochem.osakafu-u.ac.jp
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/


Further, the knockout of endoglin in mice was shown to
be embryonic lethal due to defects in vessel and heart de-
velopment [11,12]. Interestingly, endoglin-mediated BMP
signaling in PDL cells is independent of similar to mothers
against decapentaplegic (Smad)-1/5/8 phosphorylation,
which is generally accepted to be a common mediator of
BMP , but is alternatively dependent upon Smad-2, which
is generally accepted to be a mediator of TGF-β signaling
[5]. However, the molecular mechanism underlying the
unique BMP-2 signaling pathway in PDL cells remains un-
known. In this study, in order to elucidate this mechanism,
we performed microarray analyses to compare the BMP-
2-induced gene expression profiles in PDL-L2 cells with
or without siRNA-mediated endoglin knockdown.

Results and discussion
To examine how endoglin is involved in BMP-2-mediated
gene regulation in PDL cells, we performed a microarray
analysis to comprehensively search for BMP-2-responsive
genes in PDL-L2 cells with or without endoglin knock-
down (the datasets are registered as GEO accession no.
GSE54220) [13]. For this purpose, we prepared RNA sam-
ples from PDL-L2 cells that were processed under the fol-
lowing conditions: 1) treated with SMARTpool non-target
(siCont) and exposed to vehicle (Sample #1), 2) treated
with siCont and exposed to recombinant human (rh)
BMP-2 (Sample #2), and 3) treated with SMARTpool
siRNA for mouse endoglin (siENG) and exposed to

Table 1 BMP-2-induced genes in PDL-L2 cells

Gene symbol Fold change

FABP7 6.06

SMAD6 4.29

GRHL1 3.73

DFNB31 3.48

MMP11 3.25

SMAD7 3.18

UNC5B 3.16

NPNT 3.03

LGR6 3.03

RNF125 2.83

AI646023 2.83

ID4 2.79

6330416G13Rik 2.71

C730049O14Rik 2.64

1110065B09Rik 2.64

PMEPA1 2.55

CXXC5 2.46

DLX1, antisense 2.46

RGS3 2.46

TMEFF1 2.46

EFNA3 2.46

KLF10 2.46

FMOD 2.41

ST6GALNAC4 2.30

DLX2 2.30

CELF5 2.30

GSE1 2.30

SMPDL3A 2.30

HES1 2.30

TNNT2 2.30

CUX1 2.23

DPYSL3 2.20

PTGD2 2.14

JUNB 2.14

SOX11 2.14

IRF5 2.14

FST 2.14

HOXC13 2.14

ORAI2 2.14

FZD7 2.14

SKIL 2.14

JHDM1D 2.14

KIF21B 2.14

GCNT2 2.07

Table 1 BMP-2-induced genes in PDL-L2 cells (Continued)

MAL 2.00

TGFB3 2.00

CSRP2 2.00

SNAI1 2.00

DLX1 2.00

SDC3 2.00

RRM2 2.00

GJB3 2.00

SOX2 2.00

PGF 2.00

GNB4 2.00

PRG4 2.00

SERPINE1 2.00

PRRX2 2.00

NAV2 2.00

KAZALD1 2.00

C030013E06Rik 2.00

LEF1 2.00

NUDT6 2.00

Unknown 2.00
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rhBMP-2 (Sample #3). It should be noted that endoglin
expression as determined by the microarray analysis was
similar between Samples #1 and #2, and was compara-
tively decreased in Sample #3 (Additional file 1), indicating
that endoglin expression was unaffected by BMP-2, and
that the siRNA-mediated knockdown of endoglin was suc-
cessfully achieved in this experiment as shown previously
[5]. This result is supported by our real-time PCR analysis
of endoglin expression using independently prepared sam-
ples (Additional file 1). By comparing the data obtained
from Samples #1 and #2 (Dataset #1), we identified 64
genes that were upregulated more than twofold by BMP-2
in PDL-L2 cells without endoglin knockdown (Table 1).
To validate this result, we performed a real-time PCR ana-
lysis to determine the expression levels of the top three
BMP-2-induced genes (Fatty acid binding protein 7
[FABP7], Smad-6, and Grainyhead-like protein 1 [GRHL1])
(Table 1), using independently prepared samples (n = 3). As
expected, these genes were reproducibly induced by BMP-2
(Additional file 2), indicating the validity of our microarray
data. Conversely, 19 genes were identified as downregulated
by more than twofold by BMP-2 in these cells (Table 2).
We previously reported that BMP-2 phosphorylates Smad-
2, which is generally accepted to be a mediator of TGF-β
signaling but not of BMP signaling in PDL cell lines [5].
Notably, of the BMP-2-induced genes, five (Smad-6, Smad-
7, inhibitor of DNA-binding [Id]4, Follistatin [FST], and

TGFB3) are components of the TGF-β signaling pathway
registered in the Kyoto Encyclopaedia of Genes and Ge-
nomes (KEGG) PATHWAY database. (Additional file 3).
We confirmed that these five genes were induced by BMP-
2 using real-time PCR (Figure 1A and Additional file 2). In
contrast, none of the 19 BMP-2-suppressed genes are com-
ponents of the TGF-β signaling pathway (Additional file 3).
We next analysed the microarray data to determine how

the knockdown of endoglin affected BMP-2-induced gene
expression in the cells. A comparison of the data from
Samples #2 and #3 (Dataset #2) enabled us to assess the
influence of endoglin knockdown on gene expression. We
then determined which genes were endoglin-dependent
from those that were downregulated more than twofold in
Sample #3 compared to Sample #2. Of the 64 BMP-2-
induced genes (Table 1), 11 were endoglin-dependent
BMP-2-inducible genes (Table 3).
Of the endoglin-dependent BMP-inducible genes, only

Id4 is a component of the TGF-β signaling pathway de-
scribed above. Id4 encodes a transcription factor involved
in TGF-β signaling [14] and is crucial for the osteoblastic
differentiation of mesenchymal progenitor cells and bone
marrow-derived stromal cells [15,16]. To validate our
microarray data, PDL-L2 cells with or without endoglin
knockdown were exposed to rhBMP-2 for 3, 6, or 12 h, and
the Id4 mRNA levels in these cells were quantitatively de-
termined by real-time RT-PCR. As shown in Figure 1A, Id4
expression was induced by BMP-2 in a time-dependent
fashion, and this induction was prevented by endoglin
knockdown, consistent with our microarray data. Further,
Western blotting revealed that ID4 protein expression was
induced by BMP-2 in an endoglin-dependent manner
(Figure 1B).
A member of the ID protein family, ID4, regulates cell

proliferation and differentiation [17,18]. ID4 was originally

Table 2 BMP-2-suppressed genes in PDL-L2

Gene symbol Fold change

LASS4 0.50

Eps8 0.50

sult1a1 0.50

SIX5 0.50

MGAT3 0.50

Dtx4 0.50

OGN 0.47

utrn 0.47

Unknown 0.47

PARP16 0.44

5730410E15Rik 0.44

FIGF 0.44

SYNPO 0.41

fam107a 0.41

LOC100047108 0.38

SELENBP1 0.37

Unknown 0.35

CLCA1 0.33

HP 0.27

Table 3 Endoglin-dependent BMP-2-induced genes in
PDL-L2 cells

Gene symbol Fold change in Ratio
(b/a)Dataset # 1 (a) Dataset #2 (b)

DFNB31 3.48 1.44 0.41

NPNT 3.03 0.46 0.15

LGR6 3.03 1.23 0.41

RNF125 2.83 1.32 0.47

ID4 2.79 1.36 0.49

6330416G13Rik 2.71 1.22 0.45

1110065B09Rik 2.64 1.07 0.41

DLX1, antisense 2.46 1.07 0.43

ST6GALNAC4 2.30 0.81 0.35

PTGD2 2.14 0.56 0.26

IRF5 2.14 0.93 0.43
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identified as a novel dominant-negative basic helix-loop-
helix (bHLH) transcription factor distinct from ID1, ID2,
and ID3 [19-22]. Heterodimerisation of ID4 with other
bHLH proteins facilitates dominant-negative regulation
[23]. Interestingly, Tokuzawa et al. [16] reported that ID4
acts as a molecular switch and promotes the osteoblastic
differentiation of bone marrow-derived stromal cells. They
proposed a model in which ID4 mediates the release of
hairy and enhancer of split 1 (HES1) from Hairy/enhan-
cer-of-split related with YRPW motif protein 2 (HEY2)

complexes, thereby facilitating the association of HES1 with
RUNX2, a master regulator of osteoblast differentiation, on
the promoters of osteoblast-specific genes to activate the
transcription of these genes. Thus, it is conceivable that
some mechanism involving ID4 is also involved in the
BMP-2-induced osteogenic differentiation of PDL cells,
wherein endoglin functions as a key regulator of Id4 gene
expression. Further elucidation of this regulatory mechan-
ism will help explain the unique BMP-2-mediated signaling
in PDL cell lines.

Figure 1 Endoglin-dependent BMP-2-induced expression of Id4. (A) The Id4 mRNA levels in PDL-L2 cells that underwent the indicated
treatment were quantitatively determined by real-time PCR. The relative mRNA levels of endoglin relative to GAPDH in vehicle-treated PDL-L2
cells without endoglin knockdown were set at 1. The data are expressed as the mean ± SE (n = 3). aSignificant compared to vehicle (Veh)-treated
cells, P < 0.05. bSignificant compared to siCont-treated cells exposed to BMP-2, P < 0.05. (B) Effect of BMP-2 and endoglin knockdown on ID4
protein levels in PDL-L2 cells. The lysates of siCont- or siENG-treated PDL-L2 cells exposed to vehicle (Veh) or BMP-2 for 12 h were analysed for
ID4 protein levels by Western blotting. The fold increases in the relative band intensities of ID4 normalised to that of β-actin are shown beneath
the blots. The data are presented as the mean ± SE (n = 4). *P < 0.05.
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Methods
Reagents
rhBMP-2 was kindly provided by Astellas Pharma Co. Ltd.
(Tokyo, Japan). Other general reagents for molecular biol-
ogy were purchased from Wako Chemicals (Osaka, Japan)
unless specified otherwise.

Cell culture and RNA isolation
Mouse PDL-derived PDL-L2 cells were cultured as de-
scribed earlier [3,4]. Total RNA was isolated using TRI-
zol reagent (Invitrogen, Carlsbad, CA) according to the
manufacturer’s protocol.

siRNA-mediated knockdown
PDL-L2 cells were transfected with siENG or siCont as a
negative control (Thermo-Fisher Scientific, Waltham,
MA) as described elsewhere [5]. The cells were cultured
for 48 h after transfection to achieve the knockdown of
endoglin.

Microarray analysis
Total RNA was isolated from: (1) PDL-L2 cells without
endoglin knockdown, which were treated with vehicle or
rhBMP-2 (250 ng/mL) for 12 h, and (2) those with endoglin
knockdown, which were treated with BMP-2 (250 ng/mL)
for 12 h. The RNA samples were subjected to microarray
analysis using a Mouse Genome 430 2.0 Array (Affymetrix,
Santa Clara, CA).

Real-time RT-PCR
RT-PCR analyses were performed using SYBR Premix Ex
Taq™ II (Perfect Real Time) (Takara Bio Inc., Otsu, Japan).
The data were normalised to the glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) mRNA level. Moni-
toring of the mRNA-derived PCR products was performed
on an ABI 7300 Real-Time PCR System (Life Technolo-
gies, Carlsbad, CA). The sequences of the primers used
are provided in Additional file 4.

Western blotting
Cell lysates were separated in 12% SDS-polyacrylamide gels
and transferred to Immobilon-PSQ polyvinylidene difluoride
membranes (Merck-Millipore, Billerica, MA). The blots
were then incubated with primary antibodies followed by
horseradish peroxidase-conjugated anti-rabbit IgG anti-
bodies (Cell Signaling Technologies, Danvers, MA), which
were diluted as recommended in the manufacturers’ in-
structions. Immunodetected signals were visualised using
an ECL chemiluminescent system (GE Healthcare, Little
Chalfont, UK) and a LAS4000 Lumino image analyser (GE
Healthcare). A densitometric analysis of the detected
signals was performed using the MultiGauge software
(Fujifilm, Tokyo, Japan). Primary antibodies against ID4

and β-actin were purchased from Novas Biologicals
(Littleton, CO) and MBL (Nagoya, Japan), respectively.

Statistical analysis
The data are expressed as means ± standard error of the
mean (SE). Significant differences between the control
and experimental group(s) were assessed by a one-way
analysis of variance or a two-tailed Student’s t-test.

Additional files

Additional file 1: Verification of the siRNA-mediated knockdown of
endoglin in PDL-L2 cells.

Additional file 2: Validation of the microarray data for
BMP-2-induced genes in PDL-L2 cells by real-time PCR.

Additional file 3: Illustration of the TGF-β signalling pathway
registered in the KEGG PATHWAY database.

Additional file 4: Primers used in this study.
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