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The roles played by highly truncated splice
variants of G protein-coupled receptors
Helen Wise

Abstract

Alternative splicing of G protein-coupled receptor (GPCR) genes greatly increases the total number of receptor
isoforms which may be expressed in a cell-dependent and time-dependent manner. This increased diversity of cell
signaling options caused by the generation of splice variants is further enhanced by receptor dimerization. When
alternative splicing generates highly truncated GPCRs with less than seven transmembrane (TM) domains, the
predominant effect in vitro is that of a dominant-negative mutation associated with the retention of the wild-type
receptor in the endoplasmic reticulum (ER). For constitutively active (agonist-independent) GPCRs, their attenuated
expression on the cell surface, and consequent decreased basal activity due to the dominant-negative effect of
truncated splice variants, has pathological consequences. Truncated splice variants may conversely offer protection
from disease when expression of co-receptors for binding of infectious agents to cells is attenuated due to ER
retention of the wild-type co-receptor. In this review, we will see that GPCRs retained in the ER can still be
functionally active but also that highly truncated GPCRs may also be functionally active. Although rare, some
truncated splice variants still bind ligand and activate cell signaling responses. More importantly, by forming
heterodimers with full-length GPCRs, some truncated splice variants also provide opportunities to generate receptor
complexes with unique pharmacological properties. So, instead of assuming that highly truncated GPCRs are
associated with faulty transcription processes, it is time to reassess their potential benefit to the host organism.
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Introduction
G protein-coupled receptors (GPCRs) constitute the
most abundant gene family in most animal species [1]
and are the target of at least 50% of marketed drugs [2].
The number of GPCRs varies widely among different
species, with the elephant having almost three times as
many genes as the 1265 found in humans [3]. The ques-
tion then is, “does this matter?” GPCRs are not only
receptors for light and for biologically active chemicals,
but also respond to stimuli associated with smell and
taste. Therefore, the higher number of GPCR genes in
the elephant may just reflect its greater reliance on its
sense of smell. However, simply counting the number of
genes in a genome greatly underestimates the number of
gene products actually produced because of a process
known as alternative splicing. By overlooking the

number and variety of GPCR splice variants, we may
misinterpret the fine-tuning options for controling cell
signaling activity in health and disease. Furthermore, it
has been proposed that GPCR oligomerization also pro-
vides a way to increase the number of receptor entities
with a limited number of genes [4,5], and even appar-
ently non-functional highly-truncated splice variants of
GPCRs can generate functionally active GPCRs by het-
erodimerization [6,7]. To add further to this complexity
of GPCR signaling, even though individual cell types
typically express more than one hundred different
GPCRs, the most highly expressed GPCRs are not ne-
cessarily those which have been targeted therapeutically
[3]. So even if splice variants are expressed less well than
their wild-type counterparts, this does not automatically
mean they are of little consequence. Because dysregula-
tion of GPCR activity contributes to many different
pathophysiological processes [8], we still need to care-
fully consider the specific role of each GPCR and its
splice variants. Alternative splicing generates GPCRs
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with variations in specific structural domains, and in
this review we will focus on the highly truncated splice
variants which represent approximately 50% of all GPCR
isoforms studied to date. We will show that general-
izations assuming highly truncated GPCRs are non-
functional may be an oversimplification, and we will
discuss how GPCR dimerization between wild-type
receptors and their splice variants has added a new level
of regulation to the complex process of cell signaling.
This review will also focus on some unique splice var-
iants offering insights into the physiological role of these
GPCR isoforms.

Alternative splicing of genes
Alternative splicing is a major mechanism for modulat-
ing the expression of genes and enables a single gene to
increase its coding capacity, allowing the synthesis of
several structurally and functionally distinct protein iso-
forms [9,10]. In humans, a typical primary transcript, or
precursor to mRNA (pre-mRNA), contains seven or
eight introns and eight or nine exons, which together
average more than 27,000 nucleotides in length [11].
The removal of introns (pre-mRNA splicing) is carried
out by spliceosomes, ribonucleoprotein complexes that
recognize the exon-intron junctions and catalyse the re-
moval of introns and subsequent joining of exons. There
are several different types of alternative splicing [11,12]
which allows a single primary transcript to yield differ-
ent mature RNAs; an example of intron retention is
given in Figure 1. It is not unreasonable to assume that
a large fraction of all human mutations affect splicing
activity [11], and that the ratio of isoforms will ultim-
ately affect normal cellular function. Any differences in
the activities or amounts of general splicing factors and/
or gene-specific splicing regulators during development
or in different tissues will cause differential patterns of
splicing. This means that transcriptome analysis, rather
than genome analysis, is needed to assess the real impact
of alternative splicing on human diseases [9]. Splice var-
iants do not just represent the end-products of gene
transcription, they can also change the regulation of this
process. For example, intron 4 of the human neuropep-
tide Y receptor (Y1) efficiently promotes the increased
production of Y1 but this function is missing in the
splice variant [13].

GPCR trafficking – ER retention of highly truncated splice
variants
GPCRs are seven-transmembrane (7TM) domain recep-
tors (Figure 1) which are trafficked through the biosyn-
thetic pathway to the cell surface in a tightly regulated
mechanism with multiple steps and a stringent quality
control system to ensure correct GPCR folding and tar-
geting. Association of GPCRs with accessory proteins or

chaperones are a key step for the forward trafficking
through the endoplasmic reticulum (ER) and Golgi [15].
The life of GPCRs begins in the ER where they are
synthesized, folded and assembled [16,17]. During their
migration to the cell surface, GPCRs undergo post-
translational modifications to attain mature status.
While knowledge of the structure-function relationship
of GPCRs has been extended by recent high-resolution
structural studies of β2-adrenoceptors [18] and muscar-
inic M2 receptors [19], little is known of features influ-
encing overall stability of the highly truncated mutant
GPCRs. In some cases, alternative splicing generates
mutant transcripts which are simply too faulty to be
expressed; splice variants of the human endothelin (ETB)
receptor do not appear to be translated, or the pro-
ducts are quickly degraded, presumably because of their
instability [20]. Nevertheless, the preferential production
of this null function ETB by RNA editing/splicing has
been proposed to underlie the etiology of Hirshsprung
disease [20], so even the most unstable GPCRs can im-
pact on overall physiology.
Because the ER forms part of the cellular quality con-

trol machinery where functionally inactive mutant
GPCRs can be prevented from expression at the cell sur-
face [21], it is not unusual to find highly truncated
GPCRs retained in the ER (see Table 1). Conditions such
as X-linked nephrogenic-diabetes insipidus, familial
hypocalciuric hypercalcemia, familial glucocorticoid defi-
ciency or hypogonadodotropic hypogonadism are asso-
ciated with mutations in GPCRs which result in
intracellular retention in the ER or Golgi compartments
[22]. For this reason, alternative splicing which generates
truncated GPCRs which are retained in the ER may
likely to be associated with pathological conditions. Sig-
nificant ER retention is increasingly seen as the norm
because as much as 50% of all newly synthesized protein
fails to meet ER exit quality control criteria [23]. Much
of the work in this field has highlighted the importance
of C-terminal tails that can influence the efficiency of ER
exit as well as the internalization and endosomal sorting
of GPCRs [24]. Examples are human gonadotrophin-
releasing hormone (GnRH) receptors, luteinizing hormone/
choriogonadotropin (LH/CG) receptors [25], rhodopsin
[26] and vasopressin V2 receptors [27].
For the GnRH receptor, a single change in net charge

is sufficient to tip the balance in favour of the ER and di-
minish GnRH receptor available at the plasma mem-
brane [52]. Conn et al. (2006) [22] have proposed that
the apparent inefficiency of the GnRH receptor must
have evolved under strong and convergent evolutionary
pressure, suggesting there must be a strong advantage to
generating an inefficiently produced receptor which is
highly susceptible to cause a mutational disease.
Whether such unexpected evolutionary pressure also
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exists for the ER-retained highly truncated GPCRs is
unknown.

GPCR dimerization and its influence on GPCR trafficking
It is becoming apparent that many GPCRs form homo
and/or hetero-dimers or higher order oligomers and that
dimerization could both positively and negatively regu-
late GPCR cell surface targeting [53]. But it is important
to realize that some functional consequences that are
proposed to originate from heteromeric receptor interac-
tions may also be observed due to intracellular crosstalk
between signaling pathways of non-associated GPCRs
[54]. Heterodimerization between different GPCR sub-
types can significantly modify functional characteristics
of the individual protomers, included subcellular
localization, ligand binding co-operativity and proximal
signaling [55].
That homodimerization was a prerequisite for cell sur-

face targeting was first identified with the β2-adrenoceptor
[21]. A few examples of other GPCRs with constitutive
dimers/oligomers which form during biosynthesis are:

α1D-adrenoceptors (in complex with β2-adrenoceptors)
[56]; GABAB receptors [57]; ghrelin receptors [58]; go-
nadotrophin hormone (LH/hCG and FSH) receptors
[59,60]; neurotensin NTS1 and NTS2 receptors [61]; oxy-
tocin receptors [62]; and vasopressin V1a and V2 receptors
[62]. Collectively, most data suggests that receptor oligo-
mers are preassembled in the ER and ‘walk hand-in-hand’
to the cell surface [54].
The impact of GPCR heterodimerization on cell sur-

face targeting is perhaps best exemplified by GABAB

receptors [63]. The GABAB receptor (GABABR1) did not
couple effectively to expected signaling pathways until
co-expressed with GABABR2 which allowed GABAB1R
to escape from the ER [64]. Expression of the GABABR1
subunit on the cell surface was prevented through a C-
terminal retention motif which needed to be masked by
heterodimerization with GABABR2 [64]. In contrast, the
heterodimerization of α1A- and α1D-adrenoceptors pri-
marily involves the hydrophobic core of these receptors
as deletion of the C-terminal domains did not affect cell
surface expression [65]. While there is evidence for
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Figure 1 Alternative splicing of a GPCR. (A) The structural domains of GPCRs are annotated as N-tail (amino terminus), EC1-3 (extracellular
loop domains 1–3), TM1-7 (transmembrane domains 1–7), IC1-3 (intracellular loop domains 1–3) and C-tail (carboxy terminus).(B) Generation of a
5TM mutant of the ghrelin receptor results from failure to remove the intron between the two coding exons. An alternative stop codon and a
polyadenylation signal within the intron (dark box) are used to produce a C-terminal truncated GPCR form that is unable to bind to growth
hormone secretagogues [14].
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Table 1 GPCR splice variants with altered or deleted transmembrane domains

Receptor Splicing
consequence

General properties of
splice variant

Dom/neg? Refs.

α1A-adrenoceptor Truncated 6TM mutants. No cell surface expression. Yes [28]

Calcitonin receptor
(CT receptor)

Truncated 6TM mutant. Rabbit CTRΔe13 is poorly
expressed on the cell surface
and fails to activate cell signaling.

Yes [29]

Chemokine receptor 5 (CCR5) Severely truncated mutants.
Ccr5Δ32 is a 5TM mutant.

Natural mutants of human
chemokine receptor CCR5 l
acking the last 3 or 5 TMDs
are non-functional. Ccr5Δ32
complexes with CCR5 and
retains CCR5 in the ER, thus
reducing cell surface expression.

Yes [30,31]

Dopamine receptor (D3) D3nf is a truncated
5TM mutant.

Human D3nf mutant has a
punctuate perinuclear
distribution and does
not bind DA-ligands.

Yes [32,33]

GABAB receptor (GABABR1) GABABR1c has an additional
31 amino acids in TM5.

No [34]

Gastric inhibitory polypeptide
receptor (GIP )

Truncated 4TM mutant. This inactive mutant receptor
inhibited GIP signaling and
decreased cell surface expression
by retaining WT receptor in the ER.

Yes [35]

Ghrelin receptor (or GHS-R1a) GHS-R1b is a truncated
5TM mutant.

GHS-R1b is a non-signaling splice
variant of GHS-R1a.

Yes [36]

Gonadotropin-releasing
hormone receptor
(GnRH receptor)

Truncated 5TM mutant. 5TM variant of human GnRH
receptor shows decreased cell
surface expression, no ligand
binding and no signal transduction.

Yes [37]

Growth hormone-releasing
hormone receptor (GHRH-R)

Truncated 5TM mutant. The mutant GHRH-R cannot
transduce GHRH signals.

Yes [38]

Histamine receptor (H3) 6TM-rH3R is a truncated
6TM mutant.

Several splice variants of rat H3R
do not bind agonist, have an
intracellular localization and
co-expression with WT receptor
decreases cell surface expression
and functional responses.

Yes [39]

Histamine receptor (H4) hH4R(302) lacks 88 amino
acids from TMD2
to TMD4. hH4R(67) is a ~ 1.5TM
truncated mutant.

These human H4R splice variants
were localised predominantly
intracellularly when expressed
in recombinant cells. No ligand
binding or cell signaling detected.

Yes [40]

Leukotriene B4
receptor (BLT1)

LTB4R-AS1 lacks TMD2
and part of ECL1
(39 amino acid deletion).

Both isoforms of human BLT1 (LTB4R)
are expressed in human airway
smooth muscle cells.

Yes [41]

LTB4R-AS2 is the 3TMD
to C-terminus
(lacks 100 amino acids).

Luteinizing hormone
receptor (LH receptor)

Truncated 5TM mutant. The 5TM mutant of human LH receptor
binds ligand (limited) but has no
signaling activity.

Yes [42]

μ-opioid receptor (μ-OR) Truncated 6TM mutant. A 6TM μ-OR variant in mice identified
ligands lacking the traditional side effects
of classical opiates but maintaining
analgesic property.

No [6]

Motilin receptor GPR38-B is a truncated
5TM mutant.

? [43]

Neurokinin 2 receptor (NK2) An ICL2-TM4 deletion mutant. NK2β splice variant is poorly expressed
on the cell membrane and is
non-signaling.

Yes [44]
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specific heterodimerization between wild-type GPCRs
and highly truncated isoforms in the ER [58], the struc-
tural motifs responsible for heterodimerization with
truncated splice variants and subsequent ER retention
are unknown. It is currently possible to rescue GPCRs
retained in the ER using chemical or pharmacological
chaperones [66], and this presents an interesting ap-
proach to overcome the dominant-negative effect of the
highly truncated GPCR splice variants.
Evidence of heterodimerization of full length GPCRs

in vivo has been harder to obtain, [67], but examples are
available associated with pathophysiological conditions:
angiotensin-II (AT1) – bradykinin receptor complexes in
preeclampsia [68]; the μ-opioid receptor and α2A-adre-
noceptor complex in depression and opioid addiction
[69]; the adenosine A2A – dopamine D2 receptor com-
plex in Parkinson’s disease [70]; the κ-δ-opioid receptor
complex in analgesia and drug abuse [71] and the meta-
botropic glutamate (mGlu2) – 5-hydroxytryptamine (5-
HT2A) receptor complex in schizophrenia [72,73]. As
highly truncated splice variants are relatively hard to de-
tect in vivo, definite proof of the existence of their het-
erodimerization with full length GPCRs is harder to
obtain (see next section).
To address the issue of whether or not truncated

GPCRs are functionally active, we need to consider if
ER-retained GPCRs are capable of signaling activity.
There is a growing body of evidence supporting the hy-
pothesis that endocytosed receptors can activate specific

signal transduction pathways [74]. But what about sig-
naling from the ER before trafficking of receptors to the
cell surface? Studies with β2-adrenoceptor have shown
that during its trafficking through the ER/Golgi, this
GPCR is already pre-associated with its G proteins and
effector enzyme (adenylyl cyclase 2) in a signaling com-
plex [75]. Another example of a GPCR with activity in
the ER is the ghrelin receptor. Constitutive activation of
extracellular signal-regulated kinases (ERK1/2) can be
detected in the ER of HEK293 cells expressing ghrelin
receptors [58]. Both observations support the idea that
GPCR signaling can be activated in the ER, but whether
or not GPCR signaling in the ER is fundamentally differ-
ent from GPCR signaling at the cell surface remains to
be determined.
For non-constitutively active GPCRs, there is the issue

of access of agonist to the receptor when it is retained in
the ER. Nuclear metabotropic glutamate (mGlu5) recep-
tors are orientated with their ligand binding domain inside
the nucleoplasmic reticulum, and an active transport
process is used so that glutamate can access their binding
sites in this intracellular compartment [76]. As the ER
is contiguous with the nuclear membrane [77], it is pos-
sible that similar systems exist to facilitate cell signaling
of other GPCRs from this intracellular location. For
GPCRs such as the thyroid-stimulating hormone (TSH)
receptor, activation of adenylyl cyclase in different subcel-
lular compartments regulates different cellular functions
[78]. Ultimately, one should not necessarily assume that

Table 1 GPCR splice variants with altered or deleted transmembrane domains (Continued)

Neuropeptide Y receptor (Y1) A truncated 5TM mutant. The putative hY1-related 5TM accessory
protein encoded by the non-spliced hY1
mRNA is not involved in facilitating
hY1 production.

No [13]

Neurotensin receptor (NTS2) Truncated 5TM mutant
with long tail.

Rat vNTS2 is functionally active and can
heterodimerize with NTS2.

No [45]

Nociceptin receptor (NOP) Truncated 4TM mutant. The rat truncated NOP receptor is localised
to cell membranes but is non-functional.

Yes [46]

Prostaglandin F2α receptor (FP) A 6TM truncated mutant (FPs) hFPS is functionally inactive and highly
expressed in the perinuclear region.

Yes [47]

A truncated mutant (PTGFR-v2). No distinct functional role identified. No [48]

Somatostatin receptor (sst5) Human sst5TMD5 is a 5TM
truncated mutant.

Identified novel truncated but functional
human sst5-variants; present in normal
and tumoral tissues.

No [49]

Human SST5TMD4 is a 4TM
truncated mutant.

Murine sst5TMD4 is a 4TM
truncated mutant.

Three murine variants were functional
to mediate ligand-selective-induced
variations in Ca2+ and cAMP despite
being truncated and displayed
a preferential intracellular distribution.

No [50]

Murine sst5TM2 is a 2TM
truncated mutant.

Murine and rat sst5TM1
has just TM1.

Vasopressin receptor,
subtype 2 (V2)

V2b is a truncated 6TM mutant. V2b is retained in the ER where its
C-terminus can be either
intracellular or extracellular.

Yes [51]
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ER-retained GPCRs and their splice variants will be non-
signaling, or that they will serve the same function as
receptors on the cell surface.

Splice variants of GPCRs - Introduction
Previously, it was assumed that splice variants of ligand-
gated channels were common, whereas each GPCR was
far more likely to be a single product of its gene [79].
Thus, initial estimates suggested that approximately 90%
of mammalian GPCRs were intronless in their open
reading frame, which compares with approximately 35%
for other cell surface receptors [80]. Access to additional
databases and bioinformatics studies now indicates that
perhaps only 50% of mammalian GPCR genes are
intronless and do not require post-transcriptional pro-
cessing [81]. The relative absence of introns in human
GPGRs could indicate that most GPCR genes were
derived from a single intronless common progenitor
relatively recently in evolutionary history [80]. Because
intronless genes do not require post-transcriptional spli-
cing, we might expect them to be transcribed more effi-
ciently [80], but this in turn would decrease diversity.
After all, GPCR genes that do possess introns can
undergo alternative splicing, generating GPCR subtype
isoforms that may differ in their pharmacological, signal-
ing and regulatory properties. Splice variants of GPCRs
were often dismissed as the consequence of ‘leaky tran-
scription’ and hence deemed physiologically irrelevant
[82]. Despite this, we see that splice variants of GPCRs
are not uncommon, and that formation of heterodimers
and/or retention of functionally-active GPCRs in differ-
ent subcellular compartments greatly increases the com-
plexity of GPCR signaling.
The largest group of splice variants per GPCR relates

to the C-terminus [79,82] but distinct differences can
exist between human and rat/mouse orthologs such as
the EP3 receptor [83], making it essential to understand
the relationship between human and non-human GPCRs
before inferring mechanisms based on non-human re-
ceptor studies. When genomic libraries were first pre-
pared, the possibility of alternative gene splicing was
generally ignored [79], with the first clear evidence in
1989 pertaining to the rat dopamine D2 receptor [84].
GPCR splice variants often show differential distribution
among many tissues and brain regions, consistent with
cell-specific control of transcription and splicing [82],
and alternative versions of a gene transcript might be
necessary for different tissue types or at different stages
of life [80]. Thus, alternative splicing serves as a molecu-
lar tool to introduce more diversity into gene expression
and this may have been generated as a more economical
alternative to gene duplication during evolution [82].
Given that GPCRs can exist as dimers or oligomers,

we might expect to observe dominant-negative effects in

some heterozygous individuals, which could relate to de-
fective routing of the complex formed between the wild-
type and mutated receptors to the plasma membrane
[85]. Some clinical evidence described in obese patients
with mutations in melanocortin (MC4) receptor supports
this concept, but, with a few exceptions, expression of
the disease in heterozygous individuals is usually mild or
absent [86].
Alternative splicing of the GPCR superfamily in

human airway smooth muscle has recently been demon-
strated to diversify the complement of receptors [41].
Out of the 434 GPCRs detected in airway smooth
muscle, 192 GPCRs had, on average, five different
expressed receptor isoforms. There was no apparent re-
lationship between ‘wild-type’ expression levels and the
occurrence of a particular splicing event. Of note in this
study was the relatively low expression levels of GPCRs
such as the M3-muscarinic receptor, β2-adrenoceptor,
and receptors for leukotrienes and prostanoids which
are already targeted therapeutically. Therefore, a low ex-
pression level of GPCRs does not necessarily equate to
functional insignificance.

The dominant-negative effect of GPCR splice variants
with altered or deleted transmembrane domains,
generating highly truncated mutant receptors
The majority of truncated GPCR splice variants act as
dominant-negative mutations, but there are always the
exceptions, with truncated human somatostatin (sst5)
variants being surprisingly functional [50]. These sst5
variants maintain the same N-terminal region as full-
length sst5 receptors, but have different, shorter C-
terminal tails with 4, 2 or 1 TM domains (see Figure 2
and Table 1) [49,50]. Similarly, mutant chemokine recep-
tors (CCR5 and CXCR4) comprising merely the N-
terminus and TM3 to TM7 domains, i.e., lacking TM1
and TM2 (Figure 2), can still function normally when
expressed in HEK293 cells [87]. So, the full 7TM
domains are definitely not a prerequisite for effective cell
signaling. But, if the GPCR had lost TM3, we would ex-
pect this to severely compromise GPCR signaling as the
highly conserved E/DRY motif in the cytoplasmic sur-
face of TM3 has been shown to be essential for coupling
of the GPCRs such as vasopressin V2 receptors, α1B-
adrenoceptors and angiotensin-II (AT1A) receptors to G
proteins [88] by forming an ‘ionic lock’ with a glutamate
residue in TM6 [89]. Thus, the functional significance of
specific TM domains is highly dependent on the particu-
lar GPCR.
For GPCRs with relatively large N-terminal ecto-

domains, alternative splicing can generate truncated
receptors lacking the N-terminal domain. Cleaving the
N-terminal domain from the remaining TM domains
generates a more specific dominant-negative effect due
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to the released N-terminal domain (Figure 2). Hence,
soluble non-membrane anchored ‘receptors’ are seen for
the corticotrophin-releasing factor receptor (CRF2) [90],
metabotropic glutamate (mGlu6) receptor [91] and the
relaxin receptor (RXFP1) [92]. These secreted proteins
are proposed to act as biological modifiers of endogen-
ous ligand-stimulated activity by mopping up endogen-
ous ligand and preventing activation of the respective
wild-type receptors.

Association of truncated GPCRs with pathophysiological
conditions
Although there are some exceptions (see sst5 receptors
above), splice variants resulting in truncated GPCRs of
just 4 – 5 TM domains tends to generate functionally in-
active mutant receptors. In Table 1 we have 22 examples
of truncated GPCRs and the majority have no cell sur-
face expression and no cell signaling activity. These
mutant GPCRs are retained in an intracellular compart-
ment, typically the ER and frequently function as
dominant-negative mutants of the wild-type receptors.
Retaining the wild-type receptors in the ER can have

significant functional consequences, dependent on the
constitutive role of the wild-type GPCR and/or its role
in mediating responses to pathogenic organisms. For ex-
ample, the chemokine receptor 5 (CCR5) functions as a
co-receptor for HIV-1 infection, thus mutations allow
for a protective role against HIV infection [30]. The
5TM ccr5Δ32 splice variant complexes with and retains
CCR5 in the ER, so the ccr5Δ32/ccr5Δ32 genotype has
been linked with a phenotype that is “highly” protected
from HIV-1 infection, whereas the CCR5/ccr5Δ32 geno-
type confers only “relative” protection [31]. As seen with
CCR5 and its 5TM splice variant, formation of specific
heterodimers between truncated GPCRs and their asso-
ciated wild-type receptors has been identified with the
dopamine D3 receptor [32,33], ghrelin receptor mutant
polypeptide (GHS-R1b) [36] and histamine H4 receptor
[40], but the association with a specific pathology
remains speculative. The intracellular localization pat-
tern of the other 5TM mutants listed in Table 1 strongly
suggests they too form heterodimers with corresponding
wild-type GPCRs resulting in decreased cell surface ex-
pression of these receptors. Unfortunately, the absence

Loss of TM6, TM7 and C-tail 
generates a 5TM mutant 
receptor which acts as 
dominant-negative mutant by 
retaining the ghrelin receptor 
in the ER [75]. 

Connection of the N-tail 
(arrow) into TM3 generates 
5TM mutant CCR5 and 
CXCR4 receptors (TM3-7) 
which  are functionally active 
[65]. 

4TM, 2TM or 1TM domain 
receptors with different C-
tails (grey) which are 
functionally active [63]. 

Secreted truncated relaxin 
receptor acts as a dominant-
negative mutant by mopping 
up endogenous ligand [70]. 

Ghrelin receptors 

Chemokine receptors 

Somatostatin receptors 

Relaxin receptors 

Wild-type 
receptors 

Truncated 
mutants 

Functional activity of 
truncated mutants 

Figure 2 Schematic representation of the structural relationship between wild-type and truncated GPCRs.
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of antibodies capable of distinguishing wild-type and
truncated GPCRs in vivo continues to hamper develop-
ments in this area.
While intracellular retention of wild-type GPCRs can

arise by heterodimerization with 5TM mutants, there
are other means to ultimately decrease expression of
wild-type GPCRs. In schizophrenia, there is a decrease
in dopamine D3 receptor mRNA but no change in 5TM
D3nf mutant [93]. The enhanced D3nf-specific splicing
of D3 pre-mRNA in schizophrenia may lead to this
decreased expression of D3 mRNA, and thus a decrease
in D3 receptor protein [94]. To generate D3nf mRNA by
alternative splicing requires a rare splice event capable
of recognising just 98 nucleotides as an alternative in-
tron within a larger 2675 nucleotide exon [94]. Despite
its rarity, this splicing event clearly occurs.
The differential expression of truncated splice variants

is perhaps the norm [40,47,49,95,96], but there are al-
ways exceptions. The somatostatin (sst5) receptor splice
variants showed no marked differential expression, but
they were differentially regulated by changes in hor-
mone/metabolic environment in a tissue- and ligand-
dependent manner [50]. An altered hormone/metabolic
environment resulting from a high-fat diet changes the
ratio of expression of gastric inhibitory polypeptide
(GIP) receptor and its 4TM mutant in mice [35]. The
relative reduction of truncated GIP receptor expression
may be involved in the hypersensitivity of GIP and
hyperinsulinemia in these obese mice. Similarly, the ex-
pression of luteinizing hormone (LH) receptor and its
5TM truncated splice variant (LHd) in the corpus
luteum varies at different stages of the ovarian cycle
[96]. This profile of independent regulation for sst5, LH
and GIP and their splice variants in response to different
physiological conditions contrasts with the prostaglandin
F2α (FP) receptor splice variants. FP receptor splice var-
iants are differentially expressed in endothelial cells and
in highly vascularised tissues [47], but no distinct role
for PTGFR-v1 or PTGFR-v2 has been identified in rela-
tion to an altered cellular environment associated with
pregnancy [48]. Ultimately, the functional role of each
pair of wild-type GPCR and its truncated splice variant
has to be studied under both normal and pathophysio-
logical conditions, but proving a specific role for these
highly truncated receptors will remain problematic when
there is insufficient sequence difference between splice
variant and wild-type GPCR mRNA to selectively knock
down the splice variant using siRNA techniques.

Association of truncated GPCRs with constitutively active
counterparts
The ghrelin receptor (GHS-R1a) and histamine H3 and
H4 receptors are constitutively active and therefore
can function independent of agonist [39,40,97], and

dominant-negative effects have been observed with their
truncated splice variants (see Table 1). The human H4

splice variant is differentially expressed in CD34+ cord
blood-derived eosinophils and mast cells, but the func-
tional consequence of heterodimerization with wild-type
H4 is presently unknown [40]. For the ghrelin receptor,
we see marked effects of its truncated 5TM splice vari-
ant (GHS-R1b) on constitutive activation of phospholip-
ase C, with no effect on activation of ERK1/2 [36,58,98].
Bioluminescence resonance energy transfer (BRET) stud-
ies suggested that heterodimers of GHS-R1a/GHS-R1b
are concentrated in the ER, whereas homodimers of
GHS-R1a are more uniformly distributed throughout
the cell [58]. It has been proposed that conflicting find-
ings concerning the role of ghrelin in different tissues
could be linked to the presence of this ghrelin receptor
polypeptide GHS-R1b [14,99]. There is no correlation
between the expression of GHS-R1a mRNA and GHS-
R1b mRNA in different tissues [95], and the factors
regulating the expression of ghrelin receptor isoforms
are unknown. The constitutive activity of the ghrelin re-
ceptor attenuates apoptosis via a protein kinase C-
dependent process in vitro [100], and because GHS-R1b
has a dominant-negative effect on ghrelin receptor func-
tion, any changes which increase GHS-R1b relative to
GHS-R1a would be predicted to have a functional effect.
For an individual receptor, it is unclear to what degree

such ligand-independent receptor signaling is present in
the in vivo situation and consequently whether the con-
stitutive signaling is of physiological relevance [101].
Some clues can be gained from other natural mutations
of the ghrelin receptor and the melanocortin (MC4) re-
ceptor. Two families have been identified in which short
stature is segregated with a GHSR mutation (Ala204Glu)
that is characterized by substantially decreased basal ac-
tivity of the receptor [102], possibly due to decreased ex-
pression in vivo [103]. Of the individuals who were
identified as heterozygous for this mutation, not all had
short stature. This observation is compatible with codo-
minant transmission of the trait, with incomplete pene-
trance of the phenotype [102]. The constitutive activity
of the MC4 receptor is maintained by its N-terminal do-
main, and mutations in the N-terminal lead to loss of
basal activity and functional defects [104]. Obesity-
associated mutations in the N-terminal domain of MC4

decrease its constitutive activity, which suggests that in
addition to the agonist-mediated activation of MC4, this
constitutive activity is also required for the maintenance
of the anorexigenic catabolic state and the prevention of
obesity in humans [104]. Together, these observations
suggest that the physiological mechanisms controlled by
ghrelin receptors and MC4 would be highly sensitive to
the level of their basal activity. Since co-expression of
ghrelin receptors and GHS-R1b in HEK293 cells
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dramatically decreases constitutive activation of
phospholipase C [36,98], and that this effect may be
physiologically relevant, we have proposed that alterna-
tive splicing of genes for other constitutively active
GPCRs will also dramatically affect cell signaling and
functional activity.

Generation of receptor signaling complexes with altered
pharmacology
Despite this dominant property of truncated GPCRs act-
ing as dominant-negative mutants, there are examples
where some functional activity is maintained. A 6TM μ-
opioid receptor (MOR-1) variant in mice can identify
ligands which lack the traditional side effects of classical
opiates but maintain significant analgesic properties [6],
and a 5TM somatostatin (sst2) receptor also retains func-
tional activity and generates a receptor displaying an
altered pharmacology [49]. A large series of splice variants
of μ-OR (MOR) have been isolated from mice, rats, and
humans with similar splicing patterns [6]. Most MOR-1
knock-out mice with a disruption of exon 1 were unre-
sponsive to morphine, but mice with a series of MOR-1
variants generated from a second, upstream promoter
associated with exon 11 had quite different pharmacology.
These exon 11-associated variants lacking exon 1 are
6TM truncated variants, lacking the first TM domain of
MOR-1 encoded by exon 1. One proposed partner for this
inactive 6TM MOR-1 variant is the nociceptin (NOP) re-
ceptor [6]. By partnering of the mutant MOR-1 with NOP,
the resulting heterodimers have a unique pharmacology
which may provide valuable therapeutic targets.
The ghrelin receptor polypeptide (GHS-R1b) is an-

other example of a functionally inactive truncated GPCR
which can generate novel pharmacology by heterodimer-
ization with a related GPCR. In this example, GHS-R1b
can heterodimerize with the neurotensin receptor 1
(NTS1) to provide a receptor capable of responding to
neuromedin U [7]. Treatment of non-small cell lung
cancer cells with siRNA for GHS-R1b or NTS1 sup-
pressed their growth in response to autocrine produc-
tion of neuromedin U [7]. Indeed, when the ghrelin
receptor splice variant GHS-R1b was first discovered
[14], there was a rash of papers profiling GHS-R1a and
GHS-R1b mRNA expression in human tumours,
attempting to link altered expression with the state of
malignancy [105-110]. It might be fruitful instead to look
for potential novel partners for truncated splice variants
in cells and tissues where conventional molecular tools
have failed to compliment pharmacological identification
of receptor subtypes.

Conclusions
By analogy with GPCR heterodimerization as a means to
expand the repertoire of cell signaling [111], we can see

that the availability of splice variant protomers will simi-
larly influence the cell signaling capacity of GPCRs. It is
well established that the majority of GPCRs are desensi-
tized, internalized and down-regulated by constant or
repeated exposure to agonist. And, it is now established
that trafficking of GPCRs to the cell surface is a highly
regulated process, and heavily influenced by the expres-
sion of highly truncated splice variants. Is it possible that
expression of these splice variants allows fine-tuning of
these processes? Is it possible that activation of a GPCR
‘auto regulates’ expression of its spliced isoforms or reg-
ulates the expression of other GPCR isoforms? At the
present time, it is premature to answer these intriguing
questions. The expectation of dominant-negative
mutants to inactivate cell signaling by retaining the func-
tional wild-type GPCR in the ER is perhaps an oversim-
plification because retention in the ER does not
necessarily mean a loss of cell signaling activity. Further-
more, splice variants with 5TM or 6TM domains can be
functionally active and present unique pharmacology by
forming heterodimers with 7TM domain receptors. We
could start by looking for potential novel partners for
truncated splice variants in cells and tissues where con-
ventional molecular tools have failed to compliment
pharmacological identification of receptor subtypes. Cur-
rently, the incidence and association of splice variants
with disease is an area of intense interest as a means to
better target GPCR-dependent therapies. However, the
association between GPCR polymorphisms and clinical
disease are currently too weak to allow clinically mean-
ingful predictions of GPCR variants and their relation-
ship to disease onset or progression, or in drug
responses [112]. Perhaps now we need to concentrate on
treating each GPCR as a unique entity and thoroughly
assess its activity profile in relation to the co-expression
of splice variants in a cell-dependent and a time-
dependent manner.
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