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Abstract
Background: The gastrointestinal peptide hormone gastrin is known to regulate various cellular processes including 
proliferation, migration and metastasis in gastrointestinal (GI) cells. The studies described here were undertaken to 
elucidate in detail the signaling pathways mediating the migratory responses of amidated gastrin (G17) and to 
understand the involvement of the serine/threonine kinase Glycogen Synthase Kinase-3 beta (GSK3β) in this.

Results: Our results indicate that incubation of gastric cancer cells overexpressing CCK2 receptor (AGSE cells) with G17 
results in a dose and time dependent increase of GSK3βSer9 phosphorylation, indicative of an inhibition of the kinase. 
Pretreatment with a pharmacological inhibitor of PI3Kinase pathway (Wortmannin) was unable to antagonize G17-
induced GSK3βSer9 phosphorylation, suggesting that this might involve PI3Kinase-independent pathways. Treatment 
with G17 was also associated with increased Snail expression, and β-catenin nuclear translocation, both of which are 
GSK3β downstream targets. Pretreatment with a pharmacological inhibitor of GSK3β (AR-A014418) augmented Snail 
expression and β-catenin nuclear translocation in the absence of G17, whereas overexpression of a phosphorylation 
deficient mutant of GSK3β (S9A) abrogated Snail promoter induction. These suggested that G17 modulates Snail and 
β-catenin pathways via inhibiting GSK3β. In addition, overexpression of GSK3β wild type (WT) or S9A mutant inhibited 
G17-induced migration and MMP7 promoter induction. G17 studies designed following small interference RNA 
(siRNA)-mediated knockdown of Snail and β-catenin expression indicated a significant reduction of G-17-induced 
migration and MMP7 promoter induction following combined knockdown of both proteins.

Conclusion: Our studies indicate that inhibition of GSK3β is necessary to activate G17-induced migratory pathways in 
gastric cancer cells. Inhibition of GSK3β leads to an induction of Snail expression and β-catenin nuclear translocation, 
both of which participate to promote G17-induced migration.

Background
Gastric cancer is the second leading cause of cancer-
related deaths worldwide [1], and are often characterized
as highly aggressive and unresponsive to therapy [2]. The
major risk factor contributing to this disease include Heli-
cobacter pylori (H. pylori) infection, diet as well as genetic
background [3,4]. Interestingly, studies during the past
two decades have also demonstrated that the gastrointes-
tinal (GI) peptide hormone gastrin might contribute
towards the pathobiology of gastric cancers. In addition

to regulating gastric acid secretion, mature gastrin (G-17)
and its unprocessed intermediate forms progastrin and
glycine extended gastrin (Gly-G) can regulate growth in a
variety of cancer cells [5,6]. Results from transgenic mice
show that mice overexpressing the amidated form of gas-
trin have increased proliferation of gastric mucosa [7],
which can synergize with Helicobacter infection leading
to the development of invasive gastric cancer [8]. Pro-
longed hypergastrinemia increases the relative risk of
developing colon cancer [9] and might promote adenoma
to carcinoma progression [10]. Recent studies have con-
firmed gastrin to be an essential cofactor for carcinogene-
sis of gastric corpus [11]. In addition, significantly high
levels of plasma gastrin has been reported in patients
with gastric cancer, with high expression of gastrin and
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its receptor (CCK2R) in gastric cancer cell lines [12]. All
these studies indicate an important role of gastrin-and its
receptor system in mediating gastric cancer.

Glycogen Synthase Kinase-3 beta (GSK3β) is a ubiqui-
tously expressed serine/threonine kinase, which is active
in resting epithelial cells [13]. Phosphorylation of the
enzyme on tyrosine residues is required for its activity
[14]. Stimulation of cells by agonists leads to an inactiva-
tion of GSK3β primarily via phosphorylation of the serine
9 residue [15]. Earlier studies have linked GSK3β in mod-
ulating cellular migration [16,17]. In addition, GSK3β is
necessary to maintain the epithelial architecture, inhibi-
tion of which results in acquisition of a more mesenchy-
mal morphology, termed as epithelial-mesenchymal
transition (EMT) [18], a phenomenon necessary for both
normal development as well as progression of malignant
epithelial tumors [19]. GSK3β can maintain this epithelial
morphology via inhibiting the expression of Snail (media-
tor of EMT) and thus maintaining high E-cadherin
expression [20,21]. GSK3β can inhibit Snail expression
via inhibiting its transcription [18], as well as regulating
Snail degradation and nuclear translocation [22]. Snail
has been shown to induce expression of matrix metallo-
proteinases (MMPs) in cancer cells leading to increased
invasion [23]. Snail and its homologue Slug is expressed
in gastric cancer, both of which are involved in repression
of E-cadherin expression [24,25]. Various other down-
stream targets of GSK3β have been reported, of which its
role in regulating Wnt/β-catenin signaling is well estab-
lished. In the presence of axin and functionally active
Adenomatous Polyposis Coli (APC), GSK3β phosphory-
lates β-catenin at specific N-terminal residues and targets
it toward the ubiquitin-proteasomal degradation path-
way. Mutation of either APC or β-catenin itself or activa-
tion of signaling pathways that inhibit GSK3β results in
stabilization of β-catenin. Once stabilized, β-catenin
translocates to the nucleus, and via interaction with tran-
scription factors of the T cell factor/lymphoid enhancer
factor (TCF/LEF) family, activates target gene transcrip-
tion [26]. β-catenin expression has also been detected in
the invasive front [27] of the tumors. Several recent stud-
ies have demonstrated involvement of GSK3β in mediat-
ing different pathways in gastric cancer cells [28,29], and
an inhibition of the kinase following H. pylori infection
[30].

Despite an apparent connection of gastrin in gastric
cancer progression, the detailed mechanism by which
gastrin mediates its effects is still unclear. In addition to
stimulating proliferation, recent studies have shown that
G17 as well as its unprocessed forms can activate migra-
tion as well as invasion [31-33] which are prerequisites
for in vivo metastasis. Our earlier studies in gastric cancer
cells have demonstrated that G17-induced migration
involves an activation of the Mixed-Lineage-Kinase 3/

JNK1 signaling axis [31]. Due to a close connection of
GSK3β in regulating cell migration, we designed these
studies to understand its role in G17-induced migration.
Our studies show that incubation with G17 increases
GSK3βSer9 phosphorylation in a transient manner, which
was also associated with a corresponding increase in the
expression and promoter activation of Snail and an
increase in the nuclear translocation of β-catenin. Inhibi-
tion of GSK3β via a pharmacological inhibitor resulted in
increased Snail expression and β-catenin nuclear translo-
cation in the absence of G17 and overexpression of a
phosphorylation deficient mutant of GSK3β (S9A) antag-
onized G17-mediated induction of Snail promoter. Simi-
larly, ectopic overexpression of Wild type (WT) or S9A
mutant of GSK3β antagonized G17-induced migration
and MMP7 promoter induction. Our studies also indicate
that, combined knockdown of Snail and β-catenin by
small interference RNA (siRNA) significantly attenuated
G17-induced migration and MMP7 transcription. These
studies indicate that G17 modulates Snail and β-catenin
pathways via inhibiting GSK3β, both of which in turn
participate to mediate G17-induced migration.

Results
Effect of Gastrin (G17) on GSK3βSer9 phosphorylation
In order to determine the role of G17 on GSK3β pathway,
Western Blot analysis was performed with G17-treated
gastric cancer cells overexpressing the CCK2 receptor
(AGSE) [34]. These indicated a time (Fig 1A, pGSK3βSer9

panel) and dose-dependent (Fig 1B) increase in GSK3β
Ser9 phosphorylation, which was maximal after 1 hour of
G17 treatment. Pretreatment with an antagonist of the
CCK2R (YM 022), inhibited G17-indcued GSK3βSer9

phosphorylation (Fig 1C), indicating that this is mediated
via CCK2R pathway. Since Ser 9 phosphorylation is an
inhibitory phosphorylation site of GSK3β, these studies
indicated a G17-induced inhibition of GSK3β pathway,
possibly via activation of an upstream kinase (for example
AKT). In fact, Western analysis also showed an increase
in AKTSer473 phosphorylation (Figs 1A, B pAKTSer473

panel) corresponding to the time of GSK3βSer9 phospho-
rylation, indicating a simultaneous activation of AKT.
However, pretreatment of the cells with PI3Kinase inhibi-
tor (Wortmannin) was unable to antagonize G17-induced
GSK3βSer9 phosphorylation (Fig 1D, compare lanes 2 and
4, pGSK3βSer9 panel), although it completely antagonized
AKT phosphorylation (pAKTSer473 panel). In addition,
treatment of another gastric cancer cell line (MKN45)
with G17 showed an increase in GSK3βSer9 phosphoryla-
tion without any increase in AKT phosphorylation (Fig
1E). These studies indicated that G17-induced increase in
GSK3βSer9 phosphorylation might involve a PI3 Kinase
independent pathway.



Mishra et al. Journal of Molecular Signaling 2010, 5:9
http://www.jmolecularsignaling.com/content/5/1/9

Page 3 of 10
Effect of G17 on Snail expression
To understand the consequences of G17-mediated inhibi-
tion of GSK3β, G17 studies were performed to determine
changes in the expression of GSK3β-downstream target
Snail. Incubation of AGSE cells with G17 resulted in an
increase in Snail protein expression in a time (Fig 2A) and
dose-dependent (Fig 2B) manner, which was also associ-
ated with an increase in Snail transcription (Fig 2D). In
addition, G17 induction of Snail expression was mediated
via CCK2R, since pretreatment with YM 022 abolished
G17-induced Snail expression (Fig 2C).

G17 induces Snail expression and β-catenin nuclear 
translocation via inhibiting GSK3β
In order to determine whether G17 increased Snail
expression via inhibiting GSK3β, G17 studies were per-

formed following pretreatment of the cells with a phar-
macological inhibitor of GSK3β (AR-A014418) [35].
These studies showed an induction of Snail expression
following pretreatment with two different concentrations
of AR-A014418 (AR) in the absence of G17 (Fig 3A, com-
pare lanes 1, 3 and 5). Pretreatment with 5 μM of AR pro-

Figure 1 Effect of G17 on GSK3βSer9 phosphorylation in gastric 
cancer cells. (A) Confluent AGSE cells were treated in the absence (-) 
or presence (+) of 100 nM G17 in serum free media for the indicated 
periods of time. Equal amounts of total protein were fractionated by 
SDS-PAGE and subjected to Western Blot analysis utilizing antibodies 
against phospho-GSK3βSer9, total GSK3β, phospho-AKTSer473 and total 
AKT. (B) AGSE cells were treated with increasing concentrations of G17 
for 1 hour followed by Western Blot analysis with the antibodies indi-
cated. (C) & (D) Western Blot analysis of AGSE cells with the indicated 
antibodies, treated with 100 nM G17 for 1 hour following an overnight 
pretreatment with 100 nM YM 022 (C) or 1 μM Wortmannin (D). (E) 
MKN45 cells treated as in A were harvested at different time points fol-
lowing G17 treatment and analyzed by Western Blots utilizing the an-
tibodies indicated.

Figure 2 Effect of G17 on Snail expression in gastric cancer cells. 
(A) AGSE cells were treated as in 1A or (B) 1B above and subjected to 
Western Blot analysis utilizing antibodies against Snail and GAPDH (as 
control). (C) Western Blot analysis of cell extracts with the indicated an-
tibodies, treated with 100 nM G17 for 1 hour, following an overnight 
pretreatment with 100 nM YM 022. (D) Subconfluent AGSE cells were 
transiently transfected with Snail-luciferase vector (Snail-luc) along 
with β-Gal vector (for normalization of transfection). Forty-eight hours 
after transfection, cells were treated overnight in the presence (+) or 
absence (-) of 100 nM G17, and luciferase and β-Gal assays were per-
formed. The RLU/β-Gal values were represented as percent control, 
considering the untreated samples as 100%. Each transfection was 
performed in triplicate, and the data represent the mean ± SD of at 
least two independent experiments.



Mishra et al. Journal of Molecular Signaling 2010, 5:9
http://www.jmolecularsignaling.com/content/5/1/9

Page 4 of 10
duced synergistic effects with G17 on inducing Snail
expression (compare lanes 3 & 4), whereas at 10 μM AR
increased Snail expression to maximal levels without any
synergism (compare lanes 5 & 6). Similarly, AR pretreat-
ment by itself increased Snail transcription maximally,
without any synergistic effect when combined with G17
(Fig 3B). More mechanistic studies designed following
ectopic overexpression of GSK3β showed that overex-
pression of a phosphorylation-deficient kinase active
mutant of GSK3β (S9A) significantly attenuated G17-
mediated induction of Snail transcription (Fig 3C, com-
pare lanes 2 and 4). Overexpression of a kinase deficient
mutant of GSK3β (K/A), on the other hand increased
Snail transcription in the absence of G17 (compare lanes
1 and 5), and produced synergistic effects when treated
with G17 (compare lanes 5 and 6). In earlier studies we
have demonstrated that G17 treatment increases β-

catenin nuclear translocation, without any increase in the
expression of total β-catenin protein [36]. Western Blot
analysis of nuclear extracts also showed an increase in β-
catenin nuclear translocation following AR pretreatment
in the absence of G17 (Fig 3D, upper panel, compare
lanes 1 and 3), which was equal to the G17-treated levels
(lanes 3 & 4). The same extracts were also blotted with
GAPDH (cytoplasmic protein) and Lamin A/C (nuclear
protein) to show the purity of the nuclear preparation. To
understand any crosstalk between MLK3/JNK1 axis [31]
and GSK3β axis, Snail and β-catenin studies were per-
formed following pretreatment with the pharmacological
inhibitor of JNK (SP600125). These studies indicated a
complete inhibition of JNK downstream c-Jun phospho-
rylation with SP600125 (Fig 3D, lower panel, compare
lanes 2 and 6, pc-Jun panel). SP600125 however, was
unable to inhibit G17-mediated induction of Snail
expression (compare lanes 2 and 6, Snail panel) or β-
catenin nuclear translocation (compare lanes 2 and 6, β-
catenin panel). These suggested that G17-mediated acti-
vation of MLK3/JNK1 and inhibition of GSK3β might be
parallel pathways operating independent of each other.

G17-induced migration involves GSK3β inhibition
To understand whether G17-induced inhibition of
GSK3β was critical to induce migration, wound-healing
assays were carried out following overexpression of either
wild-type or mutant forms of GSK3β. As shown in Fig 4A,
G17-induced migration results in wound closure in the
cells overexpressing an empty vector or GSK3β-K/A
mutant (8 hr, Empty vector and GSK3β-KA panels). Ecto-
pic overexpression of GSK3β-WT or GSK3β-S9A on the
contrary, significantly inhibited G17-induced migration
(compare GSK3β-WT, S9A and Empty vector panels).
The average gap of migration in these cells were also
measured and plotted as graphs, which indicated a com-
plete wound closure at 8 hrs of G17 treatment with
Empty vector (Fig 4B, lane 2) and GSK3β-K/A (lane 6),
and an inhibition of migration with GSK3β-WT (lane 4)
and GSK3β-S9A (lane 8). Western Blot analysis of these
cell extracts is shown in Fig 4C, which indicates the
expression of the various ectopic GSK3β forms. In these
samples, overexpression of GSK3β-WT and S9A resulted
in a decrease in the expression of endogenous β-catenin
(β-catenin panel, lanes 3-6), suggesting that these ectopic
proteins retain GSK3β activity.

G17-induced migration involves Snail and β-catenin 
pathways
Since GSK3β inhibition in these cells was enough to
induce Snail expression and β-catenin nuclear transloca-
tion (Figs 3A, D), and inhibition of GSK3β was necessary
for G17-induced migration (Fig 4A), it was conceivable
that Snail and β-catenin are involved in G17-induced
migration. To address this possibility, wound-healing

Figure 3 Effect of GSK3β inhibition on G17-induced Snail expres-
sion and β-catenin nuclear translocation. (A) AGSE cells were treat-
ed with (+) or without (-) 100 nM G17, following an overnight 
pretreatment with either none (lanes 1, 2), 5 μM (lanes 3, 4) or 10 μM 
(lanes 5, 6) AR-A014418. Western Blot analysis was then performed 
with the antibodies indicated. (B) Luciferase (with Snail-luc) and β-Gal 
assays were performed as in 2D following a 1 hour pretreatment with 
AR-A014418. (C) AGSE cells were co-transfected with Snail-luc and β-
Gal vectors along with either Empty vector (lanes 1, 2), GSK3β-S9A mu-
tant vector (lanes 3, 4) or GSK3β-K/A mutant vector (lanes 5, 6). Lu-
ciferase and β-Gal assays were performed after G17 treatment as in 2D. 
Each transfection (3B, 3C) was performed in triplicate, and the data rep-
resent the mean ± SD of at least two independent experiments. (D) 
Upper Panel: Confluent AGSE cells were treated with G17 for 8 hours 
after an overnight pretreatment with none (lanes 1, 2), or AR-A014418 
(lanes 3, 4) or SP600125 (lanes 5, 6). At the end of treatment, nuclear 
protein was isolated and subjected to Western Blot analysis with anti-
bodies against β-catenin, GAPDH (cytoplasmic protein) or Lamin A/C 
(nuclear protein). Lower Panel: Cells were pretreated as in the upper 
panel, followed by 1 hour G17 treatment and Western Blot analysis.
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assays were performed following knockdown of endoge-
nous Snail and β-catenin protein expression (alone or in
combination) utilizing corresponding siRNAs. Transfec-
tions of Snail or β-catenin siRNA lead to a significant
decrease in the expression of the respective proteins as
shown in Fig 5C. Wound-healing assays performed under
these conditions indicated a complete closure of the
wound following G17 stimulation in the presence of con-
trol siRNA (Fig 5A, control siRNA panel), which was
inhibited significantly following combined knockdown of
Snail and β-catenin (β-catenin + Snail panel). Knockdown
of either protein alone produced only partial effects. The
average gap of migration is indicated in Fig 5B, which also
shows a complete closure with control siRNA (lane 2),
partial inhibition with Snail or β-catenin siRNA alone
(lanes 4, 6) and significant inhibition with the combina-
tion (lane 8).

G17-mediated induction of MMP7-promoter activation 
involves GSK3β, Snail and β-catenin
To elucidate further the mechanism by which G17/
GSK3β axis mediated migration, studies were also
designed with the MMP7 promoter which was shown to
be induced by G17 in our earlier studies [31]. Treatment
with G17 resulted in an increase in MMP7 promoter
activity when transfected with an empty vector (Fig 6A,
compare lanes 1, 2), which was inhibited significantly in
the presence of GSK3β-S9A (compare lanes 2, 4). Overex-
pression of GSK3β-K/A on the other hand, increased
MMP7-promoter activity in the absence of G17 (lane 5),
and produced synergistic effects when combined with
G17 (lane 6). These suggested the involvement of GSK3β
in mediating G17-induced MMP7 promoter induction.
Since Snail and β-catenin are the two downstream targets
of GSK3β mediating G17-induced migration (Fig 5A), it is
likely that they are also involved in inducing MMP7 pro-

Figure 4 Effect of overexpression of GSK3β on G17-induced mi-
gration. (A). Subconfluent AGSE cells were transiently transfected 
with Empty Vector, GSK3β-WT, GSK3β-KA mutant or GSK3β-S9A mu-
tant vectors. The cells were wounded linearly 48 hours post-transfec-
tion and, after an overnight recovery following wounding, they were 
treated with G17 and pictures obtained at the indicated times. (B) 
AGSE cells were transfected as in 4A followed by G17 treatment and 
wound healing assay. The distance of migration of the wounded edges 
for each time point were measured at several places and the average 
distance was represented by bar diagrams as "Average Gap". (C) AGSE 
cells transfected in A and treated with G17 were analyzed for protein 
expression. Western Blot analysis was performed with an HA.11 anti-
body to detect ectopic HA-tagged GSK3β proteins and with β-catenin 
and GAPDH antibodies to detect the corresponding endogenous pro-
teins.

Figure 5 Effect of knockdown of β-catenin and Snail expression 
on G17-induced migration. (A). Subconfluent AGSE cells were tran-
siently transfected with 100 nM each of either control-siRNA, or β-
catenin-siRNA, or Snail-siRNA or a combination of β-catenin and Snail 
siRNA. They were wounded 48 hours post-transfection and treated 
with G17 and pictures were obtained as described under 4A. (B) The 
distance of migration of the wounded edges were measured as in 4B 
and represented as "Average Gap". (C) AGSE cells transfected in A and 
treated with G17 were analyzed by Western Blot analysis utilizing the 
indicated antibodies.
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moter activity. Luciferase assays indicated a partial inhi-
bition of G17-induced MMP7 promoter activity
following knockdown of β-catenin expression alone (Fig
6B, compare lanes 2 and 4), which was significantly inhib-
ited following knockdown of Snail alone (lane 6) or with
combined knockdown of Snail and β-catenin (lane 8).

Discussion
The GI peptide hormone gastrin (G17 and its unpro-
cessed forms) can regulate various cellular processes
involved in cancer [37,38]. The studies described here
were designed to elucidate in depth the mechanism by
which G17 induces migration in gastric cancer cells,
which in our earlier studies have shown to involve an acti-

vation of the MLK3 and JNK1 signaling axis [31]. In this
axis G17-induced activation of JNK1 leads to phosphory-
lation and activation of c-Jun, leading to induction of
MMP7 transcription and increased migration. The cur-
rent studies were performed to determine whether the
serine/threonine kinase GSK3β plays any role in this, due
to its close connection in regulating cellular migration. A
crosstalk of MLK3 pathway with GSK3β has also been
reported earlier [39]. GSK3β has been shown to regulate
migration both in a positive and negative manner. For
example inactivation of GSK3β can increase migration in
fibroblasts [16], and induce EMT in nontumorigenic
breast epithelial cells [18]. In other studies, GSK3β was
shown to promote cancer cell migration by cooperating
with h-prune [40], or with small GTPase Rac [41]. To
obtain a mechanistic insight towards the role of GSK3β in
G17-induced migration, overexpression studies were per-
formed with either wild-type or mutant forms of the
kinase. As shown in Fig 4A, ectopic overexpression of
GSK3β-WT as well as S9A mutant significantly attenu-
ated G17-induced migration. MMP7 is known to mediate
migration of gastric cancer cells [42], the transcription of
which was induced by G17 [31]. Studies described here
also revealed an inhibition of G17-induced MMP7 pro-
moter activity following overexpression of GSK3β-S9A
(Fig 6A), which was increased following overexpression
of GSK3β-KA in the absence of G17.

In many cells, GSK3β is constitutively active, which can
be inactivated by various signaling mechanisms including
Wnt signaling pathway [26,43] and PI3K/AKT pathway
[44]. Although the detailed mechanism how Wnt path-
way inactivates GSK3β is still unclear, PI3K/AKT inhibits
GSK3β via increasing its Ser 9 phosphorylation [45]. In
our studies, treatment with G17 also produced an
increase in GSK3βSer9 phosphorylation (Figs 1A, 1B), sug-
gesting an inactivation of the kinase during G17/CCK2R
activation. This was associated with a corresponding
increase in AKTSer473 phosphorylation, indicating the
possibility that G17 might induce GSK3βSer9 phosphory-
lation and downstream cellular responses via PI3K/AKT
activation. However, pretreatment with Wortmannin
(pharmacological inhibitor of PI3Kinase), was unable to
antagonize G17-induced GSK3βSer9 phosphorylation (Fig
1D, pGSK3βSer9 panel), despite a complete inhibition of
AKTSer473 phosphorylation (pAKTSer473 panel). In addi-
tion, treatment of another gastric cancer cell line
(MKN45) with G17 produced an increase in GSK3βSer9

phosphorylation without any effect on AKT phosphory-
lation (Fig 1E). These results suggested that G17-induced
increase of GSK3βSer9 phosphorylation was mediated via
PI3K/AKT independent pathway. AKT-independent
phosphorylation of GSK3β has been reported earlier
[29,46], including those mediated by members of the PKC

Figure 6 Effect of modulation of GSK3β, β-catenin and Snail path-
ways on G17-induced MMP7 transcription. (A). Subconfluent AGSE 
cells were co-transfected with MMP7-luciferase and β-Gal vectors 
along with either EV (lanes 1, 2), GSK3β-S9A (lanes 3, 4) or GSK3β-K/A 
(lanes 5, 6) mutants. Luciferase and β-Gal assays were performed after 
G17 treatment as described under 2D. (B) AGSE cells were transfected 
as in A along with either control-siRNA (lanes 1, 2), β-catenin-siRNA 
(lanes 3, 4), Snail-siRNA (lanes 5, 6) or a combination of β-catenin and 
Snail-siRNA (lanes 7, 8). G17 treatment was performed as described un-
der 2D, followed by luciferase and β-Gal assays. Each transfection (A 
and B) was performed in triplicate, and the data represent the mean ± 
SD of at least two independent experiments.
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pathway [47]. It will thus be important to determine the
contribution of any of these signaling pathways in medi-
ating G17-induced GSK3βSer9 phosphorylation.

The detailed mechanism by which GSK3β regulates
migration is still unknown and might involve specific
downstream targets. Since Snail and β-catenin are both
downstream targets of GSK3β [22,26], which are also
involved in mediating EMT, migration and proliferative
responses, the next set of studies were specifically
focused on understanding the role of these molecules on
G17-induced events. Snail has been shown to mediate
inflammation-linked migration in cancer cells [48] and
promote EMT, a phenomenon that is a prerequisite for
cellular migration, invasion and normal development
process [19,49]. Our studies with G17 indicated a tran-
sient increase in Snail protein expression as well as tran-
scription (Figs 2A, 2D) corresponding to the time of
increased GSK3βSer9 phosphorylation. These studies also
show that the increase in Snail expression was mediated
via inhibition of GSK3β pathway, since pretreatment with
a pharmacological inhibitor of GSK3β (AR-A014418)
induced Snail expression and transcription in the absence
of G17 (Figs 3A, B). In addition, ectopic overexpression of
GSK3β-S9A inhibited G17-induced Snail transcription
(Fig 3C). The other GSK3β target β-catenin is considered
to be a major oncoprotein and a mediator of conventional
Wnt/β-catenin pathway [26]. In normal cells, constitu-
tively active GSK3β negatively regulates Wnt/β-catenin
signaling via phosphorylation-induced degradation of β-
catenin, thus limiting β-catenin expression and activation
of Wnt/β-catenin signaling. Interestingly, in our studies,
despite an induction of GSK3βSer9 phosphorylation (indi-
cating inactivation), we observed no increase in β-catenin
total protein expression at any time point following G17
treatment as reported earlier [36]. However, Western
analysis with nuclear extracts showed a distinct increase
in β-catenin nuclear translocation with G17, which was
also induced following pretreatment with AR in the
absence of G17 upto similar levels (Fig 3D, upper panel).
This indicated a link between GSK3β inactivation and β-
catenin nuclear translocation. The results from these
studies and those of others thus suggest that GSK3β acti-
vation can regulate β-catenin signaling at two distinct
levels: (i) it inhibits β-catenin expression via activating
the conventional degradation pathway (ii) it inhibits β-
catenin nuclear translocation via a yet unknown mecha-
nism. The former event seems to be lacking in these cells
with G17 stimulation, since G17 does not lead to an
increase in β-catenin total protein expression [36]. The
second event is present in the G17 pathway, since inhibi-
tion of GSK3β by AR increases β-catenin nuclear translo-
cation. The mechanism how GSK3β inhibits β-catenin
nuclear translocation is still unclear, and might involve a
similar phosphorylation dependent mechanism as was

reported in the nuclear export of cyclin D1, another
GSK3β downstream target [50]. Recent studies by
another group have demonstrated that p21-activated
kinase 1 (PAK1) is also involved in regulating various
steps of β-catenin signaling and migration following G17
stimulation [51]. It is thus tempting to speculate that a
crosstalk between GSK3β and PAK1 might be mediating
this process. Since JNK pathway can regulate β-catenin
nuclear translocation [52] and G17 can activate JNK [31],
G17 studies were also performed following pretreatment
with an inhibitor of JNK pathway (SP600125). SP600125,
however, was unable to show any increase in β-catenin
nuclear translocation or Snail induction (Fig 3D) despite
a complete antagonism of c-Jun phosphorylation, sug-
gesting that these two proteins are specifically regulated
by GSK3β axis.

To understand whether Snail and β-catenin were spe-
cific downstream targets of GSK3β to mediate G17-
induced migration, G17 studies were performed follow-
ing siRNA-mediated knockdown of endogenous Snail or
β-catenin expression. Knockdown of either protein alone
produced a partial inhibition of G17-induced migration
(Fig 5A) as well as MMP7 promoter induction (Fig 6B).
However, combined knockdown of both proteins signifi-
cantly antagonized these events. Although a crosstalk
between β-catenin and Snail has been reported earlier
[53], we were unable to detect any endogenous interac-
tion between these two proteins (data not shown). Fur-
ther studies are needed to elucidate how Snail and β-
catenin coordinate with each other to mediate G17
effects. Interestingly, our earlier studies have indicated
the involvement of MLK3/JNK1/c-Jun axis in regulating
MMP7 promoter activation and migration following G17
stimulation [31]. Taken together it seems that G17 stimu-
lation operates via two independent signaling axes which
ultimately leads to migration: one involves activation of
MLK3/JNK1 axis which operates via activation of c-Jun,
and the second one involves inhibition of GSK3β axis
leading to an induction of Snail expression and β-catenin
nuclear translocation. Both of these axes converge to
induce MMP7 transcription and migration (Fig 7), and
thus represent two potential targets for future drug devel-
opment.

Conclusions
The present study demonstrates that G17-induced migra-
tion and MMP7 promoter induction in gastric cancer
cells involve an inhibition of GSK3β pathway. G17-
induced inhibition of GSK3β leads to an increase in Snail
expression and β-catenin nuclear translocation, both of
which collectively mediate the migratory response. Thus
β-catenin and Snail serve as two downstream targets of
GSK3β in G17-induced migration pathway. However, this
G17/GSK3β/Snail-β-catenin axis seems to be indepen-
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dent of a previously identified G17/MLK3/JNK1 axis [31]
and both operate parallel to each other to induce migra-
tion. Targeting of both of theses axes might be beneficial
to antagonize G17-induced migratory effects in gastric
cancer.

Methods
Reagents
DMEM, LipofectAMINE 2000 and β-Galactosidase assay
kit were purchased from Invitrogen (Carlsbad, CA); ami-
dated gastrin (G17) from Bachem (King of Prussia, PA)
and the luciferase assay kit from Promega (Madison, WI).
The antibodies utilized were obtained from the following
sources: GSK3β, pGSK3βSer9, AKT, pAKTSer473, pc-Jun, c-
Jun, Snail and Lamin A/C (Cell Signaling Technology,
Danvers, MA), GAPDH (Ambion, Austin, TX), β-catenin
(BD Biosciences, San Jose, CA), HA.11 (Covance, Berke-
ley, CA). The CCK2R antagonist YM 022 was from Tocris
Bioscience (Ellisville, MO), PI3 Kinase inhibitor Wort-
mannin and GSK3β inhibitor AR-A014418 from EMD
Biosciences (Gibbstown, NJ) and JNK inhibitor SP600125
from Alexis Biochemicals, Axxora (San Diego, CA). The
AGSE cells were obtained from Dr. Timothy C. Wang
(Columbia University Medical Center, New York, NY) as

described earlier [34,36]. The MMP7-luciferase promoter
construct was obtained from Dr. Howard Crawford
(Stony Brook University, Stony Brook, NY) [54] and the
Snail-luciferase promoter was obtained from Dr. Antonio
Garcia de Herreros (Universitat Pompeu Fabra, Barce-
lona, Spain) [18]. The HA-tagged GSK3β expression vec-
tors (WT, K/A and S9A) were from Dr. James R Woodgett
(University of Toronto, Toronto, Canada) [55].

Cell Culture
The AGSE cells used in these studies were derived from
AGS cells stably overexpressing CCK2R as described pre-
viously [34]. These cells were maintained in DMEM sup-
plemented with 10% FBS and 100 IU/ml penicillin as
reported [31,36]. Wherever indicated, confluent popula-
tions of cells were treated with 100 nM G17 in serum
deficient media, and subjected to Western Blot analysis,
luciferase or migration assays. In the studies with various
inhibitors, cells were pretreated with the specific inhibi-
tors followed by G17 treatment.

Luciferase assays
Subconfluent populations of cells were transiently trans-
fected with Snail-luciferase [18] or MMP7-luciferase
reporter constructs [54] along with β-Galactosidase vec-
tor (to correct for transfection efficiency) using lipo-
fectAMINE 2000 as per manufacturer's instructions. To
determine the effect of overexpression of GSK3β (WT or
mutants) or knockdown of Snail and β-catenin, the corre-
sponding overexpression vectors or siRNAs respectively
were co-transfected along with the luciferase reporters.
Each transfection was performed in triplicate and each
experiment was repeated at least twice. Following 48
hours of recovery in the growth medium, the transfected
cells were treated with either vehicle or G17 for 24 hours.
Luciferase and β-Galactosidase (β-Gal) assays were per-
formed as described [31] using a luminometer (Berthold
Technologies, Centro XS3 LB 960) and a plate reader
(Power Wave XS, Biotek) respectively. The results
obtained were calculated as the ratio of relative light units
(RLU) to β-Gal values (RLU/β-Gal) and expressed as %
increase compared to controls.

Western Blot analysis
Whole cell extracts were prepared from cells treated with
G17 by RIPA extraction buffer, and equal amounts of
total protein were subjected to Western Blot analysis uti-
lizing procedures described previously [31,36]. Nuclear
protein extraction was performed following protocols as
described [56]. Briefly, cells were incubated with a lysis
buffer (containing 1% Triton X-100, 50 mM Hepes pH
7.6, 150 mM NaCl, 100 mM NaF, 50 mM Na-pyrophos-
phate, 4 mM EDTA and 10 mM Na3VO4, supplemented
with protease inhibitors) and rotated at 4°C for 30 min-

Figure 7 Model representing the signaling pathway of G17-in-
duced migration. Stimulation of G17/CCK2R pathway leads to activa-
tion of two separate signaling axes: (i) an activation of MLK3/JNK1 axis, 
which via activation of its downstream transcription factor c-Jun in-
duces MMP7 transcription leading to increased migration; (ii) an induc-
tion of GSK3βSer9 phosphorylation (inhibition of axis) via a PI3Kinase-
independent (and yet unknown) mechanism. This leads to an increase 
in Snail protein expression and β-catenin nuclear translocation, combi-
nation of which lead to increased MMP7 transcription and cell migra-
tion.
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utes. This was followed by centrifugation at 13,000 rpm
for 15 minutes to pellet nuclei, washing the nuclear pellet
once with wash buffer (containing lysis buffer + 25% glyc-
erol) and centrifugation again. To obtain nuclear extract,
the nuclear pellet was lysed in nuclear lysis buffer (wash
buffer + 300 mM NaCl), sonicated and incubated on ice
for 30 minutes followed by centrifugation. Western Blot
analysis was performed with equal amounts of nuclear
protein with the indicated antibodies. To determine the
purity of the nuclear preparation, they were blotted with
antibodies against GAPDH (cytoplasmic protein) and
Lamin A/C (nuclear protein).

Small interference RNA (siRNA)
The β-catenin siRNA [57] was synthesized from Dharma-
con (Lafayette, CO) and the Snail siRNA was from Invit-
rogen (Carlsbad, CA) [58]. The control-siRNA was from
Ambion (Austin, TX). siRNA transfection was performed
using lipofectAMINE 2000 as per manufacturer's instruc-
tions following protocols described earlier [57]. G17
treatment was performed after 48 hours of siRNA trans-
fection, and the cells were then subjected to Western
Blot, luciferase or migration assays.

Wound healing assay
These were performed following procedures described
earlier [31]. Confluent populations of cells were wounded
linearly using a small pipette tip, washed with PBS and
treated with the various agents in serum deficient media
for various periods of time. For overexpression experi-
ments, cells were transfected with the corresponding
overexpression vectors or siRNAs, wounded 48 hrs fol-
lowing transfection, and allowed to recover overnight
before adding G17. The migratory cells were visualized
and photographed using inverted phase-contrast micros-
copy (Axiovert 200 inverted microscope, Zeiss), inter-
faced with a camera (Axiocam) and the image analyzer
software (Axiovision, Zeiss). To estimate relative migra-
tion, the unclosed distances at 3 points in each scratch
were measured using the Axiovision software, their aver-
age calculated and plotted as "Average Gap".
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