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Peroxisome proliferator-activated receptor
gamma ligand-mediated apoptosis of
hepatocellular carcinoma cells depends upon
modulation of PI3Kinase pathway independent
of Akt
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Abstract

Background: Ligands of Peroxisome proliferator-activated receptor gamma (PPARg) can inhibit growth and
promote apoptosis in various cancer cells, and thus have the potential to be utilized as anticancer drugs. This
potential however, has been seriously challenged by observations that they can lead to tumor promotion in some
cancer models, possibly due to activation of different signaling mechanisms in various tumor environments.
Elucidation of the specific signaling events that modulate PPARg ligand-mediated events is thus critical to increase
their efficacy. The studies described here were designed to elucidate the signaling pathway(s) that modulate the
apoptotic potential of Troglitazone (TRG), an artificial PPARg ligand in hepatocellular carcinoma (HCC) cells.

Results: Our results indicate that the apoptotic potential of TRG was regulated by the presence or absence of
serum in the media. When added in serum-containing media, TRG inhibited proliferation and cyclin D1 expression,
but was unable to induce any apoptosis. However, TRG’s apoptotic potential was induced significantly when added
in serum deficient media, as indicated by increased PARP and Caspase-3 cleavage and results from apoptosis assay.
Furthermore, TRG-induced apoptosis in serum deficient media was associated with a dramatic reduction in
PI3Kinase downstream target AktSer473 and FoxO1Thr24/FoxO3aThr32 phosphorylation. On the contrary, there was an
increase of PI3K-induced AktSer473 and FoxO1Thr24/FoxO3aThr32 phosphorylation involving Pak, when TRG was added
in serum-containing media. Pharmacological inhibition of PI3Kinase pathway with LY294002 inhibited Aktser473

phosphorylation and sensitized cells towards apoptosis in the presence of serum, indicating the involvement of
PI3K in apoptosis resistance. Interestingly, pharmacological inhibition or siRNA-mediated knockdown of Akt or
inhibition of Pak was unable to sensitize cells towards TRG-induced apoptosis in the presence of serum. Similarly,
TRG was unable to induce apoptosis in the Akt1-KO, Akt1&2-KO MEFs in serum-containing media.

Conclusion: These studies indicate that TRG-induced apoptosis is modulated by PI3K pathway in a novel Akt-
independent manner, which might contribute to its tumor promoting effects. Since PI3K activation is linked with
various cancers, combination therapy utilizing TRG and PI3K inhibitors has the potential to not only increase the
efficacy of TRG as a chemotherapeutic agent but also reduce its off target effects.
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Background
Hepatocellular carcinoma (HCC) is one of the most
common forms of gastrointestinal (GI) cancers, and
thus a major cause of death, worldwide [1]. Neoplastic
hepatic cells not only loose their ability to regulate
growth, but they also become dedifferentiated and
thereby loose their differentiated function. The average
survival time of patients with advanced nonresectable
form of the disease is very small [2], and thus develop-
ment of safer noninvasive therapeutic approaches is cri-
tical to combat this deadly disease.
Peroxisome proliferator-activated receptors (PPARs)

are ligand-activated transcription factors, involved in
regulating many important biological processes, includ-
ing growth, differentiation, apoptosis [3]. The PPAR
family comprises of three distinct members PPARa,
PPARδ, PPARg, which function via forming heterodi-
mers with retinoid X receptor (RXR). PPARg has been
studied extensively and it is now well established that
this molecule plays a prominent role in regulating differ-
entiation of adipocytes and macrophage foam cells [4,5].
Ligands of PPARg include naturally occurring com-
pounds such as fatty acids and prostaglandin D2 meta-
bolite 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2)[6],
as well as the artificial ones known as Thiazolidine-
diones. These Thiazolidinediones include Troglitazone
(TRG), Ciglitazone, Pioglitazone, which are also known
to improve insulin sensitivity [7,8], some of which are
currently used for treating type II diabetes [9].
More recent studies indicate a new and emerging role

of PPARg in regulating growth of cancer cells [9]. Func-
tionally active PPARg is expressed in a variety of cancer
cells, including those from liposarcomas, colon, breast,
prostate and liver, which respond to Thiazolidinedione
treatment via inducing growth arrest [10-13], However,
studies with in vivo cancer models have provided con-
flicting results, thus questioning the efficacy of PPARg
ligands as chemotherapeutic agents and raising concerns
regarding the long-term term use of these as diabetic
drugs. Agonist-induced activation of PPARg in a colon
cancer xenograft model showed reduction of tumor
growth [14], whereas it resulted in tumor promotion
when PPARg was activated in a genetic model of colon
cancer (APCMin mice) [15,16]. In the intestinal epithelial
cells, PPARg was shown to induce EMT [17], a process
that is known to mediate cancer cell migration, invasion
as well as acquisition of stem cell properties [18]. In a
separate study, transgenic mice overexpressing a consti-
tutive active form of PPARg was shown to exacerbate
mammary tumor development [19]. Treatment of mice
lacking one copy of the PPARg gene with the carcinogen
azoxymethane showed a significant increase in the fre-
quency of colon tumors [20], while other studies with

mice having a breast epithelium specific ablation of
PPARg showed no increase in breast tumors [21]. TRG
was also shown to be effective in reducing tumor
growth in mouse HCC cell xenografts [22], and inducing
differentiation in patients with advanced liposarcomas
[23]. The reasons behind these paradoxical effects are
still unknown and need to be elucidated as it suggests
that PPARg-mediated pathways are likely modulated by
specific downstream signaling events in various tumor
environments.
The process of apoptosis is tightly controlled by com-

plex signaling networks that involve activation and inhi-
bition of specific downstream target proteins. Majority
of the cancer cells acquire characteristics to alter these
regulatory signaling networks, leading to evasion of
apoptosis and promotion of survival. Therapeutic
approaches that can override these alterations and pro-
duce cancer cell apoptosis have the potential to be
developed as effective drugs for cancer treatment. One
such signaling pathway is the Phosphatidylinositol-3
Kinase (PI3K)/Akt pathway, which is frequently acti-
vated in cancer [24-26] and is linked with cancer cell
survival [26,27]. The effect of PPARg agonists on cellular
apoptosis is also variable, with increased apoptosis in
some cancer cells [28-30] and none in others [31],
which might be due to modulation of the signaling
molecules by PPARg ligands in various cancer pathways.
In an effort to better understand the effects of PPARg

on HCC cell apoptosis, we focused on elucidating the
signaling pathway(s) that modulate the apoptotic poten-
tial of TRG, an artificial PPARg ligand. Our results indi-
cate that TRG (when added in serum-containing media)
can induce growth arrest associated with a reduction of
cyclin D1, PCNA (proliferating cell nuclear antigen) as
well as p21CIP1 and p27KIP1 expression. However, TRG
was unable to induce any apoptosis in these cells when
added in serum-containing media, which was associated
with an increase in AktSer473 and FoxO1Thr24/Fox-
O3aThr32 phosphorylation, indicating activation of PI3K/
Akt axis. This increase in AktSer473 phosphorylation
seems to involve Pak, since pretreatment with a Pak
inhibitor abolishes TRG-induced phosphorylation of
AktSer473. Treatment with TRG in serum-deficient
media induced potent apoptosis as evident from an
increase in Caspase-3 and PARP cleavage and the results
from apoptosis assays. Elucidation of the upstream sig-
naling pathways indicated that TRG-mediated apoptosis
in serum-deficient media is associated with a dramatic
reduction in AktSer473 and FoxO1Thr24/FoxO3aThr32 phos-
phorylation. Pharmacological inhibition of PI3Kinase
pathway inhibited TRG-induced increase of AktSer473

phosphorylation and sensitized cells to apoptosis even in
the presence of serum. However, pharmacological
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inhibition or siRNA-mediated knockdown of Akt was
unable to sensitize cells to TRG-induced apoptosis in the
presence of serum. Similarly, TRG was unable to induce
apoptosis in the MEFs with either Akt1 or Akt1/2 knock-
out, suggesting that TRG-mediated apoptosis is modu-
lated by PI3K pathway in an Akt-independent manner. In
addition, knockdown of PPARg expression although
unable to sensitize the cells to TRG-induced apoptosis in
serum-containing media, partially reduced TRG-induced
increase of AktSer473 phosphorylation suggesting the latter
to be PPARg-dependent effect of TRG.

Results
Effect of TRG on HCC cell proliferation
Our earlier results showed that TRG-mediated activa-
tion of PPARg can induce growth arrest at G1/S stage
[32]. Similarly, studies with Huh-7 HCC cells showed a
TRG-mediated inhibition of cell proliferation with time
(Figure 1A). Western Blot analysis carried out with
these cells showed a TRG-induced decrease in the
expression of cyclin D1 and PCNA in a time (Figure 1B)
and dose dependent manner (Figure 1D). Surprisingly,
the expression of the cyclin dependent kinase inhibitors
(CDKIs) p21CIP1 and p27Kip1 (known to mediate growth
arrest), also showed a TRG-dependent decrease (Figure
1C), coinciding with the time of growth arrest. These
results indicated that TRG was capable of inhibiting
proliferation of HCC cells, which is associated with a
reduced expression of cyclin D1, PCNA as well as
p21CIP1 and p27Kip1.

Effect of PI3Kinase Pathway on TRG-induced growth
arrest of HCC cells
Several earlier reports suggested that phosphatidylinosi-
tol-3 Kinase (PI3K)/Akt pathway is involved in down-
regulating p27Kip1 expression [33,34] and regulating
p21CIP1 localization [35], raising the possibility that TRG
might regulate these proteins via modulating the PI3K/
Akt pathway. Western Blot analysis performed with
TRG-treated cell extracts (spanning the period of
growth arrest) showed an increase in AktSer473 phos-
phorylation following stimulation with TRG in a time
and dose dependent manner (Figures 2A &2B respec-
tively). Since AktSer473 phosphorylation is required for
full Akt activation downstream of PI3K pathway, this
indicated an activation of PI3K/Akt pathway following
treatment with TRG. In order to determine whether the
growth arrest induced by TRG involved PI3K/Akt path-
way, studies were designed next following pretreatment
with two different pharmacological inhibitors of PI3K,
Wortmannin and LY294002. Pretreatment with PI3K
inhibitors attenuated TRG-mediated induction of Akt-
Ser473 phosphorylation, indicating the involvement of
PI3K in inducing AktSer473 phosphorylation following

TRG addition (Figure 2C, pAktSer473 panel, compare
lanes 4 & 6 with 2). In addition, PI3K inhibitors also
antagonized down-regulation of p27Kip1 expression but
not p21CIP1 (Figure 2C, p27Kip1 and p21CIP1 panels),
suggesting the involvement of this signaling pathway in
TRG-induced down-regulation of p27Kip1 expression.
However, PI3K inhibition was unable to antagonize
TRG-induced cell growth arrest as shown in Figure 2D.
These results indicated that stimulation by TRG leads to
an activation of PI3K/Akt pathway, which in turn down-
regulated the expression of p27Kip1 in a cell prolifera-
tion-independent manner.

TRG-induced apoptosis in HCC cells depends upon the
availability of serum
Since activation of PI3K/Akt pathway has been shown to
inhibit apoptosis and promote survival in many cancer
cells [26], it is likely that the apoptotic potential of TRG
is regulated by PI3K/Akt pathway. Interestingly, TRG
when added in serum-containing media was unable to
induce any apoptosis, despite being able to successfully
induce cell growth arrest (Figure 1A). This is evident
from the absence of PARP or Caspase-3 cleavage even
with the highest concentration of TRG used (Figures 3A
and 3B). This suggested that TRG-mediated cell growth
arrest and apoptosis induction might be distinct from
each other involving different signaling mechanisms.
However, addition of TRG in serum deficient media
resulted in potent apoptosis within a short time as esti-
mated by apoptosis assays (Figures 3C) and Western
Blot analysis (Figure 3D, compare PARP and Caspase-3
cleavage in - and + TRG lanes). Prominent apoptotic
morphology was evident within hours of TRG treatment
and resulted in almost complete cell death by 12 hours
(data not shown). This apoptotic effect was maximal
with 25 μM TRG as shown in Figures 3E and 3F. No
apoptosis, however, was visible when cultured in serum-
deficient media in the absence of TRG (Figures 3C
&3D, -TRG lanes), indicating that these are TRG speci-
fic effects. Results from these studies indicate that the
presence of serum (or factors in the serum) antagonize
the apoptotic potential of TRG, which is reversed when
TRG treatment is performed in the absence of serum.
Since TRG treatment in serum-containing media
resulted in an increase in AktSer473 phosphorylation (Fig-
ures 2A &2B), via PI3K activation (Figure 2C), it was
conceivable that activation of PI3K/Akt pathway antago-
nized TRG-induced apoptosis in the presence of serum.

TRG treatment inhibits PI3Kinase/Akt Pathway in the
absence of serum
To determine any correlation of PI3K/Akt pathway with
TRG-mediated apoptosis, we first determined the status
of PI3K pathway following TRG stimulation under
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serum deprived conditions. Western Blot analysis showed
a time (Figure 4A) and dose (Figure 4C) dependent
decrease in AktSer473 phosphorylation following TRG
treatment under serum deprived conditions. This is in
sharp contrast to TRG-mediated increase in AktSer473

phosphorylation in the presence of serum as shown in
early time course (Figure 4A, + serum panel) and longer
time course studies (Figures 2A &2B). Decrease in Akt-
Ser473 phosphorylation in the absence of serum indicated
an inhibition of PI3K/Akt pathway, which coincided with
TRG-induced apoptosis (Figure 3D). Surprisingly, TRG
treatment in the absence of serum also resulted in a

significant decrease in total Akt expression. In order to
rule out the possibility that the decrease in AktSer473

phosphorylation was due to a corresponding decrease of
total Akt expression, Western Blot analysis was per-
formed with TRG-treated samples following normaliza-
tion of total Akt levels. These results showed that
AktSer473 phosphorylation was reduced independent of
total Akt expression (Figure 4B, 6 hr -/+TRG lanes, com-
pare phospho- and total Akt panels).
Since Akt activation is known to mediate cell survival

via phosphorylation and inactivation of downstream pro-
teins (FoxO1/FoxO3a), we estimated the phosphorylation

Figure 1 Effect of TRG on HCC cell proliferation. (A) Subconfluent Huh-7 cells were plated on 6 well plates in regular growth medium. Next
day, they were treated with either DMSO (-) or 25 μM TRG (+) and harvested at the indicated time intervals. The cell numbers were determined
and represented as % control considering the DMSO-treated sample of 24 hours as 100%. Cells were plated in triplicate for each time point and
each experiment was repeated at least twice. (B) Cells were treated as in A for the indicated time periods, following which they were harvested
and total protein was extracted. Western Blot analysis of the cell extracts was then performed with antibodies against Cyclin D1, PCNA and
GAPDH (as control). (C) The cells were treated as in B and cell extracts analyzed by Western Blots with the indicated antibodies. (D) Huh-7 cells
were treated with either DMSO or increasing concentration of TRG for 48 hours, followed by Western Blot analysis with the indicated antibodies.
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Figure 2 Role of PI3Kinase pathway on TRG-induced cell growth arrest. (A) Subconfluent Huh-7 cells were treated as in 1B or (B) as in 1D,
followed by Western Blot analysis of the cell extracts with antibodies against pAktSer473, Akt and GAPDH. (C) Huh-7 cells were treated in the
absence (-) or presence (+) of 25 μM TRG for 24 hours following a 1 hour pretreatment with either none (lanes 1 & 2), or 1 μM Wortmannin
(lanes 3 & 4) or 5 μM LY294002 (lanes 5 & 6). Western Blot analysis was then performed with the antibodies indicated. (D) Subconfluent Huh-7
cells were treated with DMSO, 25 μM TRG, DMSO + 1 μM Wortmannin, or TRG + 1 μM Wortmannin for the indicated time intervals, following a
1 hour pretreatment with Wortmannin. Cell proliferation assay was performed as described in 1A.
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Figure 3 Effect of TRG on HCC cell apoptosis in the presence or absence of serum. (A) Subconfluent Huh-7 cells were treated with 25 μM
TRG in serum-containing media for the indicated time intervals. Western Blot analysis was performed with antibodies against PARP, Caspase-3
and GAPDH (as control). (B) Huh-7 cells were treated with increasing concentrations of TRG in serum-containing media for 9 hours and
subjected to Western Blot analysis as in A. (C) Huh-7 cells were treated with 25 μM TRG in serum deficient media for the indicated time
intervals. At the end of incubation cells were harvested and apoptosis assays were performed using cell death detection ELISAPLUS kit. The data
in each set represents the mean ± S.D. of 4 independent experiments. (D) Western Blot analysis of cell extracts treated with TRG in serum
deficient media for the indicated periods of time and with antibodies against PARP, Caspase-3, cleaved Caspase-3 (detects only the cleaved
form) and GAPDH. (E) &(F) Huh-7 cells treated with increasing concentrations of TRG in serum-deficient media were subjected to apoptosis
assays using cell death detection ELISAPLUS kit (E) or Western Blot analysis (F).
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status of FoxO1/FoxO3a proteins following treatment
with TRG in both serum-containing and serum deprived
media. Western Blot analysis was performed with an anti-
body against phospho-FoxO1Thr24/FoxO3aThr32 which
detects FoxO1 when phosphorylated at Threonine 24 and
FoxO3a when phosphorylated at Threonine 32, both of
which are Akt phosphorylation sites [36]. The results

indicated a decrease in the levels of phospho-FoxO1Thr24/
FoxO3aThr32 following stimulation by TRG in serum defi-
cient media (Figure 5A), which also correlated with inhi-
bition of Akt under these conditions (Figure 4A).
Similarly, addition of TRG in serum-containing media
resulted in an increase in phospho-FoxO1Thr24/Fox-
O3aThr32 levels (Figure 5B) and correlated with increased

Figure 4 Effect of TRG on PI3K/Akt Pathway in the presence or absence of serum. (A) Huh-7 cells were treated with 25 μM TRG in the
absence (-) or presence (+) of serum for the indicated periods of time. Equal amounts of cell extracts were analyzed by Western Blot analysis
utilizing antibodies against pAktSer473, Akt or GAPDH. (B) Western Blot analysis of the cell extracts treated with TRG in serum-deficient media
following normalization of total AKT levels. (C) Cells treated with increasing concentrations of TRG for 6 hours in serum deficient media were
subjected to Western Blot analysis as in A.
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Akt activation (Figure 4A). These suggested the possibi-
lity that TRG-mediated apoptosis depends upon modula-
tion of the PI3K/Akt/FoxO1/3a axis, antagonism of
which might increase its apoptotic potential.

Inhibition of PI3K pathway sensitizes HCC cells to TRG-
mediated apoptosis in the presence of serum
Studies were designed next to determine whether inhibi-
tion of PI3K pathway might sensitize cells towards
TRG-induced apoptosis in the presence of serum. To
address this, cells were subjected to TRG treatment in
serum-containing media following a pretreatment with
the pharmacological inhibitor of PI3K, LY294002. Wes-
tern Blot analysis indicated an inhibition of AktSer473

and FoxO1Thr24/FoxO3aThr32 phosphorylations following
pretreatment with LY294002, confirming the efficacy of
the inhibitor (Figure 6A). Pretreatment with LY294002
was capable of inducing apoptosis in these cells even in
the presence of serum, which was increased with TRG

(compare PARP and Caspase-3 cleavage in lanes 3 and
4). In order to rule out any non-specific effects of
LY294002 (LY29), similar studies were also performed
with LY303511 (LY30), which is a structural analog of
LY29 without any inhibitory effect on PI3K pathway,
and thus serves as a negative control for LY29 [37]. The
results showed that TRG was capable of inducing PARP
and Caspase-3 cleavage in the presence of serum only
when pretreated with LY29 and not with LY30 (Figure
6B, compare lanes 3 and 4), thus confirming that the
proapoptotic effects of TRG are linked with antagonism
of PI3K/Akt pathway.
Several candidate kinases have been reported to phos-

phorylate Akt at Ser473, which include mammalian tar-
get of rapamycin complex 2 (mTORC2) [38] and p21-
activated kinase-1 (Pak1) [39]. Since long-term treat-
ment with rapamycin (drug that normally inhibits
mTORC1) can also inhibit mTORC2 [40], we performed
a long term (24 hour) TZD treatment in the presence of

Figure 5 Effect of TRG on FoxO1/FoxO3a phosphorylation in the presence or absence of serum. Huh-7 cells were treated with 25 μM
TRG for the indicated time intervals in serum deficient (A) or serum-containing (B) media. Western Blot analyses were performed with
antibodies against phospho-FoxO1Thr24/FoxO3aThr32, FoxO1, FoxO3a and GAPDH.
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Figure 6 Effect of PI3K pathway inhibition on TRG-induced apoptosis resistance in serum-containing media. (A) Huh-7 cells were treated
in the absence (-) or presence (+) of 25 μM TRG in serum-containing media for 24 hours following a 1 hour pretreatment with none (lanes 1 &
2), 50 μM LY294002 (lanes 3 & 4), or 20 μM Akt inhibitor VIII (lanes 5 & 6). Western Blot analyses were performed with the antibodies indicated.
(B) Cells were treated with TRG as in A following a 1 hour pretreatment with none (lane 2), 50 μM LY294002 (lanes 3), or 20 μM LY303511 (lane
4) and analyzed by Western Blot. (C) Huh-7 cells were treated with TRG as in A, following a 1 hour pretreatment with none (lanes 1 & 2), 10 μM
Pak inhibitor (lanes 3 & 4), or 100 nM Rapamycin (lanes 5 & 6). Western Blot analyses with the indicated antibodies were performed next. (D)
Huh-7 cells were transfected with either a control-siRNA (lanes 1 & 2), or PPARg-siRNA (lanes 3 & 4) for 72 hours, followed by TRG treatment in
serum-containing media for an additional 24 hours. Western Blot analysis was then performed with the indicated antibodies. TRG-treated Huh-7
cell extract in serum-deficient media was used as positive control for PARP cleavage.
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rapamycin. Rapamycin was unable to antagonize TRG-
induced AktSer473 phosphorylation and instead resulted
in increased basal AktSer473 phosphorylation (Figure 6C,
compare lanes 1 & 2 with lanes 5 & 6) as also reported
earlier [38], and abolished P70S6KThr389 phosphorylation
(target of mTORC1). To determine whether TRG-
mediated increase of AktSer473 phosphorylation involved
Pak, TRG studies were performed following pretreat-
ment with a peptide inhibitor of Pak that disrupts PIX
and Pak interaction (PAK 18) [41]. Pretreatment with
Pak inhibitor abolished TRG-mediated increase of Akt-
Ser473 phosphorylation (Figure 6C, pAktSer473 panel,
compare lanes 2 & 4). However, despite inhibiting Akt-
Ser473 phosphorylation, Pak inhibitor was unable to
induce PARP cleavage in the presence of TRG (see
PARP panel). These suggested that TRG increased Akt-
Ser473 phosphorylation via a PI3K/Pak-mediated pathway,
which seem to be independent of the apoptotic pathway.
In an attempt to understand whether TRG-induced

increase of AktSer473 phosphorylation was mediated by
PPARg, small interference RNA (siRNA) studies were
designed to knockdown the expression of endogenous
PPARg. Treatment with TRG showed an increase in
AktSer473 phosphorylation in the control-siRNA trans-
fected cells (Figure 6D, compare lanes 1 & 2), which
was partially reduced when PPARg expression was
knocked down (compare lanes 3 & 4). Knockdown of
PPARg expression, however, was unable to show
increased apoptosis with TRG, as indicated by lack of
PARP cleavage (Figure 6D, PARP panel). These sug-
gested the involvement of PPARg in TRG-induced phos-
phorylation of AktSer473 and possibly not in the
apoptosis pathway.

PI3K antagonizes TRG-induced apoptosis independent of
Akt
To gain more insight regarding the molecules down-
stream of PI3Kinase pathway that might be involved in
antagonizing the apoptotic potential of TRG in serum-
containing media, we focused on Akt, due to its role in
promoting cell survival. Surprisingly, however, apoptosis
studies designed following pharmacological inhibition of
Akt (with Akt Inhibitor VIII) was unable to sensitize the
cancer cells to TRG-induced apoptosis in the presence
of serum (Figure 6A, compare PARP and Caspase-3
cleavage, lanes 5 and 6), despite complete inhibition of
the phosphorylation of Akt downstream targets Fox-
O1Thr24/FoxO3aThr32 (pFoxO1/3a panel). This indicated
the possibility that PI3Kinase pathway inhibits TRG-
induced apoptosis independent of Akt activation. To
demonstrate conclusively that this is in fact Akt inde-
pendent, experiments were performed following siRNA-
induced knockdown of Akt expression. This was
achieved by using an Akt-siRNA sequence that can

knockdown the expression of both human Akt1 and 2
[42], which are the two major Akt isoforms expressed in
these cells (Figure 7A, compare lane 1 in Akt1/Akt2/
Akt3 panels). Overexpression of Akt-siRNA (Akt row)
significantly reduced the expression of endogenous Akt1
and 2 (lanes 3, 4), whereas a control-siRNA (control,
lanes 1, 2) or an Akt-3m-siRNA sequence containing 3
mismatches against the Akt target sequence (Akt-3m,
lanes 5, 6) were unable to reduce Akt1 and 2 expression.
In these studies, knockdown of Akt expression was
unable to sensitize these cells to TRG-induced apoptosis
in the presence of serum (Figure 7A, compare PARP
and Caspase-3 cleavage in lanes 2, 4, 6). To confirm the
participation of Akt, TRG studies were also performed
with MEFs from Akt-WT, Akt1-KO and Akt1&2-KO
animals. These showed that absence of either Akt1 or
both Akt1&2 was still unable to sensitize these MEFs to
TRG-induced apoptosis when added in the presence of
serum (Figure 7B, compare PARP and Caspase-3 clea-
vage in lanes 2, 4, 6), despite a complete absence of Akt-
ser473 phosphorylation. These studies confirmed that
PI3K antagonizes TRG-induced apoptosis in an Akt-
independent manner.

Involvement of PI3K pathway in modulating TRG-induced
apoptosis in other HCC cells
To determine whether PI3K modulated TRG-induced
apoptosis in other HCC cells, studies were designed
with Hep3B HCC cell line. As shown earlier in Huh-7
cells, treatment with TRG in the presence of serum lead
to an increase in AktSer473 phosphorylation (Figure 8A,
pAkt473 panel compare lanes 1 & 2 and 3 & 4) mediated
via activation of PI3K pathway (Figure 8B, compare
lanes 2 & 3). This is however, reversed when treated
with TRG in serum deficient media resulting in a potent
inhibition of AktSer473 phosphorylation (Figure 8A, com-
pare lanes 5 & 6 and 7 & 8). Similarly, TRG was unable
to induce any PARP cleavage when added in serum-con-
taining media (Figure 8A lanes 1-4), which was induced
when added in serum deficient media (lanes 5-8).
Furthermore, LY29-mediated inhibition of PI3K pathway
sensitized these cells to TRG-induced apoptosis in
serum-containing media (Figure 8B, PARP panel, com-
pare lanes 2 & 3). Pretreatment with the nonspecific
inhibitor LY30 (lane 4) or Akt inhibitor (lane 5) were
unable to induce any PARP cleavage as was also shown
earlier in Huh7 cells. These studies suggest that PI3K
modulation of TRG-induced apoptosis is a generalized
event in various HCC cells.

Discussion
Studies in the recent years revealed the possibility of uti-
lizing PPARg ligands as cancer chemotherapeutic drugs
[43]. This possibility however, has been challenged by
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the fact that these ligands resulted in tumor promotion
in animal models of colon cancer [15,16]. In addition,
overexpression of a constitutive active form of PPARg
promoted breast tumor development [19]. In terms of
the cellular effects mediated by PPARg in cancer cells,
its role on growth arrest has been fairly well established,
while significant controversy still exist regarding its role
in mediating apoptosis. This is evident from multiple
studies showing induction of cellular apoptosis by
PPARg ligands [28,30], while others [31] showing no

apoptosis following Thiazolidinedione treatment. These
observations indicated the possibility that specific signal-
ing pathways operating in different tumor microenviron-
ments might be modulating the apoptotic potential of
these ligands. It is thus critical to understand the
detailed signaling pathways that modulate the apoptotic
potential of PPARg ligands, targeting of which can
increase their efficacy towards cancer treatment. The
signaling pathway, most extensively studied in the recent
years due to its close involvement in promoting cancer

Figure 7 Effect of Akt inhibition on TRG-induced apoptosis resistance in serum-containing media. (A) Subconfluent Huh-7 cells were
transfected with either control-siRNA (lanes 1 & 2), AKT-siRNA (lanes 3 & 4), or Akt-3m-siRNA (lanes 5 & 6) for 72 hours followed by treatment
with 25 μM TRG for 24 hours in serum-containing media. Western Blot analysis was then performed with the antibodies indicated. (B) MEFs from
Wild type (lanes 1 & 2), Akt1 KO (lanes 3 & 4) or Akt1/2 KO (lanes 5 & 6) mice were treated with 25 μM TRG in serum-containing media for 24
hours followed by Western Blot analysis. TRG-treated Huh-7 cell extracts in serum-deficient media were used as positive controls for PARP and
Caspase-3 cleavage in A & B and WT-MEF extract as positive control for Akt3 in A.
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cell survival is the PI3K/Akt pathway [26], thus making
it an important target for cancer drugs [27]. In fact,
aberrant activation of PI3K/Akt pathway has been
reported in multiple cancers [26,24,25]. To determine
whether PI3K was involved in modulating PPARg
ligand-induced apoptosis, we designed studies with
TRG, an artificial PPARg ligand.
Our studies indicated that treatment of the HCC cells

with TRG results in growth arrest associated with a
reduced expression of the growth specific proteins cyclin
D1 and PCNA. Surprisingly, however, TRG treatment
also resulted in a decrease in the expression of CDKIs

p27Kip1 and p21CIP1, coinciding with the period of
growth arrest. Activation of PI3K/Akt pathway has been
shown to inhibit the expression of p27Kip1 [33] and reg-
ulate the localization of p21CIP1 [35]. Interestingly, TRG
treatment of HCC cells in the presence of serum
resulted in increased AktSer473 phosphorylation in a time
and dose dependent manner. This was also associated
with increased phosphorylation of FoxO1Thr24/Fox-
O3aThr32 (downstream targets of Akt), and thus indicat-
ing an activation of PI3K/Akt axis. To understand any
contribution of PI3K on TRG-induced growth arrest, we
designed studies with two pharmacological inhibitors of

Figure 8 Effect of PI3K and Akt inhibition on TRG-induced apoptosis resistance in Hep3B cells. (A) Subconfluent Hep3B cells were treated
with 25 μM TRG in the presence (+) or absence (-) of serum for the indicated periods of time. Western Blot analyses were performed with the
antibodies indicated. (B) Western analysis of Hep3B extracts treated with TRG in serum-containing media for 24 hours following a 1 hour
pretreatment with none (lane 2), LY294002 (lane 3), LY303511 (lane 4), or Akt inhibitor VIII (lane 5).
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PI3K (Wortmannin and LY294002). Inhibition of PI3K/
Akt pathway was unable to antagonize TRG-induced
growth arrest or p21CIP1 expression, suggesting these to
be PI3K-independent effects of TRG. Wortmannin and
LY294002 pretreatment however, antagonized TRG-
induced down-regulation of p27Kip1, indicating PI3K
involvement in regulating this. Since PI3K/Akt can
down-regulate p27Kip1 expression via phosphorylation
and inhibition of FoxO transcription factors, (the known
inducers of p27Kip1 transcription) [36], and TRG treat-
ment in serum-containing media results in increased
FoxO1Thr24/FoxO3aThr32 phosphorylation (Figure 5B), it
is conceivable that TRG utilizes this mechanism to
decrease p27Kip1 expression in HCC cells. In order to
understand the mechanism by which TRG was inducing
AktSer473 phosphorylation, we focused on two kinases,
mTORC2 and Pak, each one of which has been shown
to function as PDK2 thus phosphorylating Akt at Ser473
position [38,39]. Although prolonged treatment with
rapamycin was unable to antagonize TRG-induced Akt-
Ser473 phosphorylation, these results don’t completely
rule out the participation of mTORC2 in mediating this,
and more mechanistic approaches are needed to confirm
this. Interestingly, these studies revealed the involvement
of Pak in TRG-induced phosphorylation of AktSer473.
Pak has been reported recently to be involved in
PPARg-induced motility of intestinal epithelial cells [44].
A recent study has demonstrated overexpression of Pak
in HCC, which was also associated with a more aggres-
sive behavior and cellular metastasis [45]. The involve-
ment of Pak in breast cancer is also well established
[46,47]. In addition, the knockdown studies with
PPARg-siRNA indicated the involvement of PPARg in
TRG-induced phosphorylation of AktSer473. Combined
together, these suggested a potential crosstalk of PPARg
with Pak signaling in mediating AktSer473 phosphoryla-
tion, which might explain the tumor promoting effects
of PPARg activation reported in earlier studies [15,16].
Activation of PI3K/Akt axis is linked with inhibition of

apoptosis and promotion of survival of cancer cells, sug-
gesting that TRG treatment in these cells might lead to
apoptotic resistance. In fact, TRG treatment under con-
ditions that lead to growth arrest (i.e. in serum-contain-
ing media) was unable to induce any cleavage of PARP
or Caspase-3 (mediators of apoptosis), suggesting
absence of apoptosis. Surprisingly, the apoptotic poten-
tial of TRG was significantly increased when this ligand
was added to the cells in a serum deficient media, asso-
ciated with a large increase in PARP and Caspase-3
cleavage. In addition, TRG treatment under conditions
that lead to apoptosis was associated with a dramatic
decrease in AktSer473 phosphorylation, suggesting an
antagonism of PI3K/Akt axis. To determine whether
activation of the PI3K/Akt signaling in the presence of

serum might have antagonized the proapoptotic effects
of TRG, studies were designed following pretreatment
with the PI3K inhibitor LY294002. Pretreatment with
LY294002 inhibited PI3K-mediated AktSer473 and down-
stream FoxO1Thr24/FoxO3aThr32 phosphorylation and
sensitized the cells towards TRG-induced apoptosis in
the presence of serum. These studies provided evidence
that TRG-induced apoptosis is modulated by PI3K path-
way, an antagonism of which is required for induction
of apoptosis. To understand the role of Akt in mediating
this apoptotic response, TRG studies were also per-
formed following antagonism of Akt pathway. Surpris-
ingly, inhibition of Akt either by a pharmacological
inhibitor or by siRNA-mediated knockdown of Akt1 and
2 expressions was unable to sensitize the cells towards
TRG-induced apoptosis, when cultured in the presence
of serum. Similarly, TRG was unable to induce apoptosis
in MEFs derived from either Akt1-KO or Akt1&2-KO
animals. These studies confirmed that activation of PI3K
pathway can antagonize TRG-induced apoptosis in an
Akt-independent manner. Elucidation of the mechanism
by which serum deprivation converts TRG from a pro-
survival to a proapoptotic molecule will be critical to
understand the mechanism by which they regulate apop-
tosis and to utilize them in cancer therapy. Studies are
currently underway to determine mechanistically
whether the proapoptotic effects of TRG (in the absence
of serum) involve PPARg. Based on our studies, we have
proposed a model describing the mechanism of TRG-
induced cellular effects (Figure 9). The facts that (i) acti-
vation of PI3K/Akt axis is linked with many cancers and
(ii) TRG treatment shows an activation of this axis, the
long-term use of the Thiazolidinediones as type-II dia-
betic drugs raises an important clinical concern regard-
ing their potential side effects in promoting cancer.
Additional studies are also needed to understand
whether the Thiazolidinediones currently used as type-II
diabetic drugs (Rosiglitazone and Pioglitazone) produce
similar effects as TRG on PI3K/Akt activation and
apoptosis.

Conclusions
The present study demonstrates that PPARg ligand TRG
when added in serum-containing media can inhibit cell
proliferation in HCC cells independent of PI3K/Akt
pathway. This is not associated with any apoptosis,
while treatment with TRG in serum-deficient media
results in potent apoptosis. Analysis of the signaling
pathway(s) modulated under these two conditions
revealed a TRG-mediated activation of PI3K/Akt signal-
ing in serum-containing media which seems to involve
the participation of Pak, and an inhibition of the same
axis in serum-deficient media. In addition, pharmacolo-
gical inhibition of PI3K sensitized the cells towards
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apoptosis in the presence of serum, suggesting involve-
ment of PI3K signaling with this apoptotic resistance.
However, inhibition of Akt by pharmacological inhibitor
or knockdown by Akt-siRNA was unable to sensitize
cells to TRG-induced apoptosis, suggesting this to be a
novel PI3K-mediated Akt independent survival pathway.
These studies suggest a potential mechanism by which
PPARg activation might lead to tumor promotion in cer-
tain cancer models, which might respond to a combina-
tion therapy with TRG and PI3K inhibitors. In addition,

elucidation of the molecular mechanism that converts
TRG to a proapoptotic molecule will help in increasing
the efficacy of PPARg ligands to be utilized in cancer
therapy.

Methods
Reagents
The Huh-7 cells were obtained from Dr. Robert E Lan-
ford (University of Texas Health Science Center, San
Antonio) [48], the Hep3B cells were obtained from

Figure 9 Model representing the signaling pathway of TRG-induced cellular effects in HCC cells . Incubation of the HCC cells with TRG in
serum-containing media leads to a decrease in the expression of cyclin D1 resulting in cell growth arrest. TRG-induced reduction of cyclin D1
was shown to involve inhibition of CREB pathway in our earlier studies [32]. However, incubation with TRG under these conditions shows no
apoptosis and leads to an increase in AktSer473 and FoxO1Thr24/3aThr32 phosphorylation involving PI3K and Pak pathways, which might lead to
tumor progression. Inhibition of PI3K pathway but not Pak or Akt pathways sensitizes cells towards apoptosis. In addition, incubation with TRG in
serum-deficient media antagonizes AktSer473 phosphorylation and leads to potent apoptosis.
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ATCC and mouse embryonic fibroblasts (MEFs) from
Akt-wild-type (Akt-WT), Akt1-knockout (Akt1-KO),
Akt1&2-Knockout (Akt1&2-KO) were obtained from
Dr. Nissim Hay at University of Illinois, Chicago [49].
DMEM-F12, MEM, DMEM tissue culture media and
LipofectAMINE 2000 were purchased from Invitrogen
(Carlsbad, CA); Troglitazone, Wortmannin, LY294002,
LY303511, Rapamycin, Akt inhibitor VIII and Pak inhi-
bitor (PAK18) were purchased from Calbiochem, EMD
Bioscience (San Diego, CA); the ELISAPLUS kit was pur-
chased from Roche Applied Sciences (Indianapolis, IN).
The antibodies were obtained from the following
sources: Poly (ADP-ribose) polymerase (PARP), Cas-
pase-3, Akt, p21Cip1, pAktSer473, Akt1, Akt2, Akt3,
cleaved Caspase-3, pFoxO1Thr24/3aThr32, FoxO1,
FoxO3a, pP70S6KThr389, P70S6K, PPARg from Cell Sig-
naling Technology (Danvers, MA), Cyclin-D1 from Neo-
markers, Lab Vision Corporation (Fremont, CA);
GAPDH from Ambion Inc. (Austin, TX), p27Kip1 from
BD Biosciences (San Diego, CA), PCNA from Oncogene
Research Products (Cambridge, MA).

Cell culture
MEFs from Akt-WT, Akt1-KO, Akt1&2-KO, Huh-7 and
Hep3B cells were grown in DMEM, DMEM-F12 and
MEM medium respectively, supplemented with 10%
FBS. All experiments were carried with subconfluent
populations of cells. In the experiments with TRG treat-
ment in serum-containing media, cells were treated with
25 μM TRG (unless indicated otherwise) in media con-
taining 10% FBS for various lengths of time followed by
either apoptosis assays or Western Blot analysis. In the
studies with TRG treatment in serum deficient media,
cells were treated with similar concentrations of TRG in
media containing no serum.

Cell Proliferation Assay
The cell proliferation assay was performed following
protocols described earlier [32]. Briefly, subconfluent
Huh-7 cells plated on 6-well plates were treated with
either DMSO or 25 μM TRG for various lengths of
time. At the time of harvest, the cells were trypsinized
and counted using a hemocytomemeter. The cell num-
bers were represented as % control considering the
DMSO treated sample of 24 hours as 100%. Cells were
plated in triplicate for each time point and each experi-
ment was repeated at least twice.

Apoptosis Detection by Cell death Detection ELISA assay
This assay was performed utilizing the cell death detec-
tion ELISAPLUS kit (Roche Applied Sciences, Indianapo-
lis, IN) as per manufacturer’s specification and as
described previously [50,51]. Cells plated on 6-well

plates were treated with indicated concentrations of
TRG, following which both adherent and floating (apop-
totic) populations were harvested. They were lysed in
NP-40 lysis buffer and the nucleosomes in the superna-
tant were detected photometrically using an ELISA plate
Reader (SpectraMax 190, Molecular Devices). The read-
ings were expressed as degree of apoptosis considering
the untreated control as 1.

Western Blot analysis
Western Blot analysis was performed following treat-
ment of cells with various agents and at different time
intervals following procedures described earlier [50,52].
Equal amounts of total protein were fractionated by
SDS-PAGE, transferred to PVDF membranes, followed
by Western Blotting with the indicated antibodies. In
the studies with kinase inhibitors, cells were pretreated
with the respective inhibitors followed by treatment
with TRG.

Small interference RNA (siRNA) transfection
The following siRNA sequences were utilized in these
studies; Akt-siRNA (sense 5’-UGCCCUUCUACAAC-
CAGGAdTdT-3’), Akt-3m-siRNA (sense 5’-UGCCGUU-
CUUCAACGAGGAdTdT-3’) [42], and PPARg-siRNA
(sense 5’-AACAGAUCCAGUGGUUGCAGAdTdT-3’)
[53]. The siRNA oligonucleotides along with the corre-
sponding antisense oligonucleotide were synthesized from
Dharmacon (Lafayette, CO). The control-siRNA was
from Ambion (Austin, TX). siRNA transfection was per-
formed using lipofectAMINE 2000 as per manufacturer’s
instructions, following procedures described previously
[50]. Pilot experiments were performed first to optimize
the amount and time of maximal protein knockdown.
TRG treatment was performed following siRNA transfec-
tion during the period of maximal protein knockdown.
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