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Inhibition of PI3K/AKT and MAPK/ERK pathways
causes activation of FOXO transcription factor,
leading to cell cycle arrest and apoptosis in
pancreatic cancer
Sanjit K Roy1, Rakesh K Srivastava1, Sharmila Shankar2*

Abstract

Background: Mammalian forkhead members of the class O (FOXO) transcription factors, including FOXO1, FOXO3a,
and FOXO4, are implicated in the regulation of several biological processes, including the stress resistance,
metabolism, cell cycle, apoptosis and DNA repair. The objectives of this study were to examine the molecular
mechanisms by which FOXO transcription factors induced cell cycle arrest and apoptosis and enhanced anti-
proliferative effects of sulforaphane (SFN, an active compound in cruciferous vegetables) in pancreatic cancer cells.

Results: Our data demonstrated that SFN inhibited cell proliferation and colony formation, and induced apoptosis
through caspase-3 activation in pancreatic cancer cells. The inhibition of PI3K/AKT and MEK/ERK pathways activated
FOXO transcription factors. SFN inhibited phosphorylation of AKT and ERK, and activated FOXO transcription
factors, leading to cell cycle arrest and apoptosis. Phosphorylation deficient mutants of FOXO proteins enhanced
FOXO transcriptional activity, and further enhanced SFN-induced FOXO activity and apoptosis. SFN induced the
expression of p21/CIP1 and p27/KIP1, and inhibited the expression of cyclin D1.

Conclusion: These data suggest that inhibition of PI3K/AKT and ERK pathways acts together to activate FOXO
transcription factor and enhances SFN-induced FOXO transcriptional activity, leading to cell cycle arrest and
apoptosis.

Background
Cancer of the pancreas is the fourth leading cause of
cancer death in the United States. This year approxi-
mately 32,000 Americans will die from cancer of the
pancreas. With an overall 5-year survival rate of 3% [1],
pancreatic cancer has one of the poorest prognoses
among all cancers [2]. Only 20% of pancreatic cancer
patients are eligible for surgical resection, which cur-
rently remains the only potentially curative therapy [3].
Unfortunately, many cancers of the pancreas are not
resectable at the time of diagnosis. There are limited
treatment options available for this disease because
chemo- and radio-therapies are largely ineffective, and
metastatic disease frequently redevelops even after

surgery [1,2]. Therefore, developing effective strategies
to prevent pancreatic neoplasms are of paramount
importance.
Sulforaphane (SFN), a constituent of cruciferous vegeta-

bles, is a naturally occurring isothiocyanate with promising
chemopreventive activity [4]. Epidemiological studies have
shown that people who eat cruciferous vegetables have
reduced incidence of breast and prostate cancer. SFN pos-
sesses anti-oxidant, anti-proliferative and anti-carcinogenic
properties [5-7]. SFN is effective in preventing chemically
induced breast [8,9], stomach [5] and colon [10] cancers
in rats. We and others have shown that SFN inhibited the
growth of prostate, breast, oral and squamous carcinoma
xenografts [11-15]. SFN enhanced radiosensitivity of
tumor cells in vitro and in vivo [16]. Furthermore, a phar-
macokinetic study has demonstrated that it is rapidly
absorbed and 82% bioavailable [17]. SFN induces a phase
2 enzyme, thereby neutralizing carcinogens before they
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can damage DNA [18,19]. SFN inhibits benzo[a]pyrene-
DNA and 1,6-dinitropyrene-DNA adducts formation
[20-23], and downregulates PI3K/AKT [24,25] and NF�B
[12,26,27] pathways. We have recently demonstrated that
SFN induces death receptors (DR4 and DR5) and proa-
poptotic members of Bcl-2 family, inhibits antiapoptotic
Bcl-2 proteins, activates caspase(s), and enhances apopto-
sis-inducing potential of TRAIL in vitro [12]. In vivo, SFN
inhibits growth of PC-3 cells orthotopically implanted in
nude mice by inducing apoptosis and inhibiting tumor cell
proliferation, metastasis and angiogenesis [12]. These stu-
dies strongly suggest that SFN can be developed as a can-
cer preventive agent.
PTEN (phosphatase and tensin homolog deleted on

chromosome 10, also called MMAC1 or TEP1) is a
tumor suppressor gene [28-30], which is frequently
deleted or mutated in a wide range of human cancers,
including glioblastoma [31], melanoma [32], and pros-
tate [33], breast [34], and endometrial cancers [35].
While point mutations in PTEN rarely occur in pan-
creatic cancer [36,37], functional inactivation of PTEN
through promoter methylation [38], loss of protein
expression [39], reduction of mRNA levels [40], or loss
of heterozygocity (LOH) of linked markers [37,41] occur
with high frequency. Phosphatidylinositol 3,4,5-trispho-
sphate (PIP3) is a substrate of PTEN [42-44]. AKT is a
serine-threonine protein kinase regulated by PIP3 that is
implicated in survival signaling in a wide a variety of
cells, including fibroblastic, epithelial, and neuronal cells
[45]. PTEN increases sensitivity to cell death in response
to several apoptotic stimuli by negatively regulating the
PI3K/AKT pathway [43]. In addition to its role in regu-
lating the PI3K/AKT cell survival pathway, PTEN also
inhibits growth factor-induced Shc phosphorylation and
suppresses the MAP kinase signaling pathway [46], sug-
gesting that PTEN has roles in independent of PI3K/
AKT signaling pathway. Hyperactivation of AKT is asso-
ciated with resistance to apoptosis, increased cell
growth, cell proliferation, metastasis, angiogenesis, and
cellular energy metabolism [45,47-54]. Overexpression
of AKT has been reported in a variety of human can-
cers, including pancreatic cancer, and cells expressing
elevated levels of AKT are less sensitive to apoptosis
stimuli [38,55-57]. Antagonizing PI3K activity negatively
regulates AKT activity. Once activated, however, AKT
exerts antiapoptotic effects through phosphorylation of
substrates such as Bad [58,59] and caspase-9 [60] that
directly regulate the apoptotic machinery, or human tel-
omerase reverse transcriptase subunit [61], forkhead
transcription family members [62,63] and IB kinases
[64] that indirectly inhibit apoptosis [65]. Studies in
pancreatic cancer cell lines have demonstrated that
PI3K is required for growth and survival of tumor cells
[66-68]. Furthermore, amplification or activation of

AKT2 occurs in up to 60% of pancreatic cancer
[39,69-71], supporting the participation of an activated
PI3K-AKT axis in this disease.
FOXO subfamily of forkhead transcription factors

include FOXO1a/FKHR, FOXO3a/FKHRL1, and
FOXO4/AFX [72-75]. The PI3K pathway, via activation
of its downstream kinase AKT, phosphorylates each of
the FOXO proteins [62,76,77]. These phosphorylations
result in impairment of DNA binding ability and
increased binding affinity for the 14-3-3 protein [62,77].
Newly formed 14-3-3-FOXO complexes are then
exported from the nucleus [78], thereby inhibiting
FOXO-dependent transcription. Inhibition of the PI3K
pathway leads to dephosphorylation and nuclear translo-
cation of active FKHRL1, FKHR, and AFX; which induce
cells cycle arrest and apoptosis [79]. Conversely, loss of
PTEN activity results in increased AKT activity leading
to inhibition of FOXO protein activity through phos-
phorylation and cytoplasmic sequestration. In addition,
the data demonstrate that FOXO transcriptional activity
controls cellular proliferation and apoptosis downstream
of PTEN [80,81]. FOXO regulates cell cycle and apopto-
tic genes such as cyclin-dependent kinase inhibitor
(CKI) p27KIP1 [78,80,82,83], Bim [84,85], Fas ligand [62],
and Bcl-6 [86]. Consequently, activation of the PI3K
pathway serves to repress FOXO-mediated growth arrest
and apoptosis. However, regulation of FOXO target
genes is multifactorial, and therefore other transcription
factors and post-translation regulatory events will influ-
ence the final level of protein expression. Interestingly,
overexpression of AKT, and inactivation and loss of
PTEN are frequently observed in pancreatic cancer
[39,66-71], indicating a potential role for FOXOs in
modulating both cell cycle and apoptosis during tumori-
genesis and treatment. Together, these results indicate
that FOXO proteins are important downstream effectors
of PTEN tumor suppressive activity; however, their
molecular targets and mechanisms of action in pancrea-
tic cancer are not well understood.
The Ras proteins are small (21 kDa) GTP-binding,

membrane-associated proteins [87]. The Ras proteins
transduce signals from ligand-activated tyrosine kinase
receptors to downstream effectors [88]. Activating muta-
tions can impair GTP hydrolysis and lead to constitu-
tively activated Ras that impacts the cellular phenotype
[89]. Oncogenic Ras can lead to cellular transformation
[90], presumably by perturbing its signal transduction
pathways. Ras regulates multiple signaling pathways
[91]. Three major groups of MAP kinases are found in
mammalian cells: extracellular signal-regulated protein
kinase (ERK) [92], p38 MAP kinase [93], and c-Jun
N-terminal kinase (JNK) [94-96]. MAP kinases regulate
many cellular activities, which range from gene expres-
sion to mitosis, movement, metabolism, and apoptosis.
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These MAP kinases are activated by the dual phosphor-
ylations of neighboring threonine and tyrosine residues
in response to various extracellular stimuli [97,98]. Spe-
cifically, p38 and JNK have been implicated in stress-
responsive signaling leading to the initiation of adaptive
events such as gene expression, differentiation, metabo-
lism, and apoptosis [94,95,99]. ERKs are often activated
by growth signals, such as epidermal growth factor
(EGF) or platelet-derived growth factor [100]. We have
recently demonstrated that inhibition of PI3K/AKT and
MEK/ERK pathways act synergistically to regulate anti-
angiogenic effects of EGCG and SFN through activation
of FOXO transcription factors [24,101].
Furthermore, FOXO transcription factors play a cru-

cial role in the regulation of tissue homeostasis in
organs such as the pancreas, and complex diseases such
as diabetes and cancer. Unfortunately, the intracellular
mechanisms by which SFN inhibits growth and induces
apoptosis in pancreatic cancer cells through regulation
of FOXO transcription factors have never been exam-
ined. The objectives of our study were to examine the
molecular mechanisms by which FOXO transcription
factors induce cell cycle arrest and apoptosis and
enhances the anti-proliferative effects of SFN in pan-
creatic cancer cells. Our results demonstrate that inhibi-
tion of PI3K/AKT and ERK pathways activates FOXO
transcription factors. SFN inhibited phosphorylation of
AKT and ERK, and dephosphorylated FOXO transcrip-
tion factors, leading to cell cycle arrest and apoptosis.
Phosphorylation deficient mutants of FOXO proteins
enhanced FOXO transcriptional activity, and further
enhanced SFN-induced FOXO activity.

Results
Sulforaphane (SFN) inhibits cell growth in human
pancreatic cancer cells
We first examined the effects of SFN on cell prolifera-
tion in four pancreatic cancer cell lines by XTT assay.
We have selected four pancreatic cancer cell lines (MIA
PaCa-2, AsPC-1, PANC-1 and Hs766T) because they
have been derived from different pathological stages and
may thus respond differently to SFN [102,103]. MIA
PaCa-2 harbors a point mutation on Kras gene resulting
in amino acid sunbstitution from the wild-type glycine
to a valine at codon 12. AsPC-1 and PANC-1 harbor a
point mutation on Kras gene resulting in amino acid
substitution from glycine to aspartate. Hs766T cell line
does not possess a point mutation in codon 12 of the
Kras gene. SFN inhibited cell viability in a dose depen-
dent manner (Fig. 1). PANC-1 and MIA PaCa-2 cell
lines were most sensitive, AsPC-1 cell line was moder-
ately sensitive, and Hs 766T cell line was least sensitive.
These data suggest that SFN can be a viable agent for
inhibiting pancreatic cancer cell proliferation.

Sulforaphane inhibits colony formation in human
pancreatic cancer cells
We next examined the effects of SFN on colony forma-
tion (a characteristic of cancer) on four pancreatic can-
cer cell lines by soft agar assay. SFN inhibited colony
formation in a dose dependent manner (Fig. 2). Colonies
formed by PANC-1 and MIA PaCa-2 cells were most
sensitive, AsPC-1 cell line was moderately sensitive, and
Hs 766T cell line was least sensitive. These data suggest
that SFN can be used as a potent chemopreventive
agent for pancreatic cancer.

Sulforaphane induces caspase-3 activation in human
pancreatic cancer cell
Most chemopreventive agents induce apoptosis through
mitochondrial pathway, which activates caspase-3 [104].
We therefore examined whether SFN-induced apoptosis
through caspase-3 activation in pancreatic cancer cell lines
(Fig. 3). SFN induced caspase-3 activity in PANC-1, MIA
PaCa-2, Hs 766T and AsPC-1 cells. However, a relatively
high dose of SFN was required to activate caspase-3 in Hs
766T cells compared to other pancreatic cancer cell lines.
These data suggest that SFN induced apoptosis through
caspase-3 activation and may engage the mitochondria.

Regulation and function of PI3K/AKT and MAP kinase
pathways by sulforaphane
In most cancer cells, AKT is constitutively active and
enhances cell proliferation [105]. In order to understand
a relationship between PTEN and AKT in SFN-induced
apoptosis, we measured the expression of PTEN and
phosphorylation status of AKT in cells treated with SFN
(Fig. 4A). SFN induces PTEN expression and inhibits
AKT phosphorylation in pancreatic cancer PANC-1
cells. By comparison, SFN has no effect on total AKT
expression. These data suggest that SFN inhibits cell
proliferation by regulating PI3K/AKT pathway.
Ras/Raf/MAP kinase pathway regulates many cellular

activities, which range from gene expression to mitosis,
movement, metabolism, and apoptosis [94,106-109]. We
therefore examined the effects of SFN on the expression
of Ras, and activation of ERK, JNK and p38 MAP
kinases. SFN inhibited Ras expression in PANC-1 cells
(Fig. 4A). Treatment of PANC-1 cells with SFN caused
a decrease in ERK phosphorylation, and an increase in
JNK phosphorylation. SFN has no significant effect on
p38 MAP kinase activity in PANC-1 cells. These data
suggest that SFN inhibits growth and induces apoptosis
through regulation of Ras/Raf/MAP kinase pathway.
We next examined whether SFN induces apoptosis

through PI3K/AKT pathway (Fig. 4B). Pancreatic cancer
cells were transfected with empty vector, wild type
PTEN, dominant negative AKT (DN-AKT), and apopto-
sis was measured. Overexpression of wild type PTEN or
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Figure 1 Effect of sulforaphane (SFN) on viability of pancreatic cancer cells. Pancreatic cancer (PANC-1, MIA PaCa-2, Hs766T and AsPC-1)
cells were treated with SFN (0-30 μM) for 48 h. Cell viability was measured by XTT assay. Data represent the mean ± S.D. * = significantly
different from respective controls, P < 0.05.
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Figure 2 Effect of sulforaphane (SFN) on colony formation. Pancreatic cancer (PANC-1, MIA PaCa-2, Hs766T and AsPC-1) cells were treated
with SFN (0-20 μM), and number of colonies were counted. Data represent the mean ± S.D. * = significantly different from respective controls,
P < 0.05.
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DN-AKT induced apoptosis in AsPC-1 and PANC-1
cells. Treatment of transfected cells with SFN further
enhanced apoptosis. These data suggest that inhibition
of PI3K/AKT pathway enhances SFN-induced apoptosis
in pancreatic cancer cells.
We next examined whether inhibition of MEK/ERK

pathway enhances SFN-induced apoptosis in pancreatic
cancer cells. MEK1/2 inhibitor (PD98059) induced
apoptosis in PANC-1 and AsPC-1 cells (Fig. 4C).
PD98059 enhanced SFN-induced apoptosis. Overall,
these data suggest that inhibition of PI3K/AKT and
MEK/ERK pathways enhanced SFN-induced apoptosis.

Sulforaphane induces p21/WAF1/CIP1, and p27/KIP1 and
inhibits cyclin D1
PI3K/AKT signaling pathway may be involved in the
control of the cell cycle progression most likely through
mechanisms involving the activation of FOXO transcrip-
tion factors [82]. We next examined the effects of SFN
on cell cycle regulatory genes. SFN induced the expres-
sion cell cycle inhibitors p21/WAF1/CIP1 and p27/KIP1, and
inhibited the expression of cyclin D1 in PANC-1 cells
(Fig. 5). These data suggest that SFN causes growth
arrest by regulating expression of cell cycle genes.

Overexpression of FOXO transcription factors inhibits cell
viability and enhances FOXO transcriptional activity in
pancreatic cancer cells
In order to examine whether FOXO transcription
factors affect the ability of SFN to inhibit cell viability,
pancreatic cancer cells were transfected with FOXO1,
FOXO3a or FOXO4 (Fig. 6A and 6B). FOXO expression
plasmids and FOXO-luciferase construct (pGL3-6X
DBE) have previously been described [101]. Overexpres-
sion of FOXO1, FOXO3a, and FOXO4 inhibited cell
viability in PANC-1 and AsPC-1 cells. The inhibitory
effects of SFN on cell viability were further enhanced
when pancreatic cancer cells were transfected with
FOXO1, FOXO3a, and FOXO4. These data suggest that
FOXO transcription factors can enhance the antiproli-
ferative effects of SFN.
We next examined whether SFN induces transcrip-

tional activation of FOXO in the presence or absence
phosphorylation deficient triple mutants of FOXO pro-
teins (FOXO1-TM, FOXO3a-TM, or FOXO4-TM).
PANC-1 and AsPC-1 cells were transfected with wild
type FOXO promoter linked to a luciferase reporter
gene in the presence or absence of plasmids expressing
FOXO1-TM, FOXO3a-TM, or FOXO4-TM (Fig. 6C

Figure 3 Effect of sulforaphane (SFN) on caspase-3 activity. Pancreatic cancer PANC-1, MIA PaCa-2, Hs 766T and AsPC-1 cells were treated
with SFN (0-30 μM) for 12 h and caspase-3 activity was measured as per manufacturer’s instructions (EMD Biosciences). Data represent the mean
± S.D. * = significantly different from respective controls, P < 0.05.
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and 6D). After transfection, cells were treated with SFN
for 24 h, and luciferase activity was measured. Transfec-
tion of cells with plasmids expressing FOXO1-TM,
FOXO3a-TM, or FOXO4-TM induced FOXO transcrip-
tional activity compared with the empty vector (control).
SFN-induced FOXO transcriptional activity was further
enhanced in the presence of FOXO1-TM, FOXO3a-TM,
and FOXO4-TM. These data indicate that FOXO
transcription factor may play a major role in mediating
biological effects of SFN in pancreatic cancer cells.

Inhibition of PI3K/AKT and MEK/ERK pathways
synergistically/additively induces FOXO transcriptional
activity and apoptosis in the presence or absence of
sulforaphane
Since inhibition of PI3K/AKT and MEK/ERK pathways
induce apoptosis in pancreatic cancer cells, we sought to

examine whether these pathways act together to regulate
SFN-induced apoptosis. AKT inhibitor (AKT Inh-IV)
and MEK1/2 inhibitor (PD98059) synergistically/addi-
tively induced apoptosis in PANC-1 and AsPC-1 cells
(Fig. 7A and 7B). AKT inhibitor and PD98059 alone
enhanced SFN-induced apoptosis. Interestingly, the
combination of AKT inhibitor and PD98059 with SFN
induced more apoptosis than AKT inhibitor plus SFN or
PD98059 plus SFN. These data suggest that inhibition of
PI3K/AKT and MEK/ERK pathways act synergistically/
additively to regulate apoptosis in the absence or
presence of SFN.
Since inhibition of PI3K/AKT and MEK/ERK

pathways synergistically/additively induces apoptosis in
pancreatic cancer cells, we sought to examine whether
inhibition of these two pathways act together to regulate
FOXO activity. AKT inhibitor (AKT Inh-IV) and

Figure 4 Effects of sulforaphane (SFN) on the expression of PTEN, AKT, and MAP kinases; and the effects of PI3K/AKT and MAPK
pathways on SFN-induced apoptosis. (A), PANC-1 cells were treated with or without SFN (0-20 μM) for 24 h. The cells were harvested and the
expression of PTEN, phospho-AKT, AKT, Ras, phospho-ERK, ERK, phospho-JNK, JNK, phospho-p38 and p38 was measured by Western blotting. (B),
PTEN and dominant negative AKT enhance SFN-induced apoptosis. AsPC-1 and PANC-1 cells were transiently transfected with empty vector
(pcDNA3.1), PTEN wild type (PTEN-WT) or dominant negative AKT (AKT-DN) along with pCMV-LacZ vector (as transfection control) for 24 h. After
medium replacement, cells were treated with SFN (10 μM) for 48 h and, apoptosis was measured by Live Dead Assay. Data represent the mean
± S.D. *, # = significantly different from respective controls, P < 0.05. (C), MEK inhibitor PD98059 enhances SFN-induced apoptosis. AsPC-1 and
PANC-1 cells were pretreated with PD98059 (1 μM) followed by treatment with SFN (10 μM) for 48 h and, apoptosis was measured by Live Dead
Assay. Data represent the mean ± S.D. *, # = significantly different from respective controls, P < 0.05.
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MEK1/2 inhibitor (PD98059) synergistically induced
FOXO transcriptional activity in AsPC-1 and PANC-1
cells (Fig. 7C and 7D). AKT inhibitor or PD98059
enhanced SFN-induced FOXO transcriptional activity.
Interestingly, the combination of AKT Inh-IV and

PD98059 with SFN induced greater FOXO transcrip-
tional activity than AKT Inh-IV plus SFN or PD98059
plus SFN. These data suggest that inhibition of PI3K/
AKT and MEK/ERK pathways acts synergistically/addi-
tively to regulate FOXO transcriptional activity in the
absence or presence of SFN.

Discussion
Our study demonstrates, for the first time, that cancer
preventive effects of SFN are regulated through activation
of FOXO transcription factors. Specifically, we have
demonstrated that (i) SFN induces apoptosis through
caspase-3 activation, and causes growth arrest through
induction of p21 and p27 and inhibition of cyclin D1; (ii)
SFN induces apoptosis through inhibition of both PI3K/
AKT and MEK/ERK pathways, and activation of FOXO
transcription factors; (iii) inhibition of PI3K/AKT and
MEK/ERK pathways acts together to enhance the activa-
tion of FOXO transcription factors; and (iv) phosphoryla-
tion deficient mutants of FOXO proteins further enhance
SFN-induced FOXO activity and apoptosis. Our data are
in agreement with others who demonstrated the antican-
cer activity of SFN in pancreatic cancer [110-112].

0   10  20 (µM)
SFN

Cyclin D1
β-Actin

P27/KIP1

P21/CIP1

Figure 5 Effects of sulforaphane (SFN) on cell cycle regulatory
genes. PANC-1 cells were treated with SFN (0-20 μM) for 24 h. The
expression of p21/CIP1, p27/KIP1 and cyclin D1 was measured by
Western blotting. Anti b-actin antibody was used as a loading
control.

Figure 6 Effects of FOXO transcription factors on cell viability and FOXO transcriptional activity. (A and B), PANC-1 and AsPC-1 cells were
transiently transfected with plasmids expressing neo (pcDNA3.1), FOXO1, FOXO3a, or FOXO4 along with pCMV-LacZ vector (as transfection
control). After transfection, cells were treated with or without SFN (10 μM) for 48 h, and cell viability was measured by XTT assay. Data represent
the mean ± S.D. * = significantly different from respective controls, P < 0.05. (C and D), Phosphorylation deficient mutants of FOXO enhance
sulforaphane-induced FOXO transcriptional activity in pancreatic cancer. PANC-1 and AsPC-1 cells were transiently transfected with empty vector
or constructs encoding FOXO1-TM, FOXO3a-TM, or FOXO4-TM together with 6X DBE-luciferase for 24 h. After transfection, cells were washed
with RPMI, treated with SFN (10 μM) for 24 h, and harvested for firefly/Renilla luciferase assays using the Dual-Luciferase Reporter Assay System
(Promega). Luciferase counts were normalized using Renilla luciferase transfection control (pRL-TK; Promega). Data represent the mean ± S.D.
* = significantly different from respective controls, P < 0.05.
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FOXO transcription factors play a crucial role in the
regulation of tissue homeostasis in organs such as the
pancreas and the ovaries and complex diseases such as
diabetes and cancer [113-117]. FOXO transcription fac-
tors are emerging as critical transcriptional integrators
among pathways regulating differentiation, proliferation,
survival, and angiogenesis [118-121]. FOXO transcrip-
tion factors regulate angiogenesis and postnatal neovas-
cularization by regulation angiopoietin 2 (Ang2) and
eNOS [121]. Gene expression profiling showed that
FOXO1 and FOXO3a specifically regulate a nonredun-
dant but overlapping set of angiogenesis- and vascular
remodeling-related genes [121]. The FOXO1-deficient
mice died around embryonic day 11 because of defects
in the branchial arches and remarkably impaired vascu-
lar development of embryos and yolk sacs [118]. We
have recently demonstrated that inhibition of the MEK/
ERK and PI3K/AKT pathways synergistically induced
FOXO transcriptional activity and inhibited angiogenesis
(cell migration and capillary tube formation); these

events were further enhanced in the presence of SFN
[24]. Phosphorylation deficient mutants of FOXO
enhanced antiangiogenic effects of SFN by activating the
FOXO transcription factor. These studies suggest that
activation of FOXO transcription factor by SFN could
be an important physiological process to inhibit angio-
genesis which may ultimately control tumor growth.
Activation of Kras has been shown to activate both

PI3K/AKT and MAPK pathways [24,101,122-124]. Oxi-
dative stress and activation of the JNK pathway induce
the nucleocytoplasmic translocation of the pancreatic
transcription factor Pdx-1, which leads to pancreatic
b-cell dysfunction [125,126]. Furthermore, FOXO1/
FKHR plays a role as a mediator between the JNK path-
way and Pdx-1 [127]. Under oxidative stress conditions,
FOXO1 changed its intracellular localization from the
cytoplasm to the nucleus in the pancreatic b-cell line
HIT-T15. The overexpression of JNK also induced the
nuclear localization of FOXO1, but in contrast, suppres-
sion of JNK reduced the oxidative stress-induced

Figure 7 Inhibition of PI3K/AKT and MEK/ERK pathways synergistically/additively enhanced sulforaphane (SFN)-induced apoptosis and
FOXO transcriptional activity in pancreatic cancer cells. (A and B), PANC-1 and AsPC-1 cells were pretreated with AKT inhibitor IV (1 μM)
and/or MEK1/2 inhibitor PD98059 (10 μM) for 2 h, followed by treatment with SFN (10 μM) or DMSO (control) for 48 h. At the end of incubation
period, cells were harvested and apoptosis was measured by TUNEL assay. Data represent mean ± SD. * = significantly different from respective
controls, P < 0.05. (C and D), PANC-1 and AsPC-1 cells were transiently transfected with 6X DBE-luciferase construct for 24 h. After transfection,
cells were pretreated with AKT inhibitor IV (1 μM) and/or MEK1/2 inhibitor PD98059 (10 μM) for 2 h, followed by treatment with SFN (10 μM) or
DMSO (control) for 24 h. Cells were harvested for firefly/Renilla luciferase assays using the Dual-Luciferase Reporter Assay System (Promega).
Luciferase counts were normalized using Renilla luciferase transfection control (pRL-TK; Promega). Data represent the mean ± S.D. *, #,
** = significantly different from respective controls, P < 0.05.
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nuclear localization of FOXO1, suggesting the involve-
ment of the JNK pathway in FOXO1 translocation. In
addition, oxidative stress or activation of the JNK path-
way decreased the activity of AKT in HIT cells, leading
to the decreased phosphorylation of FOXO1 following
nuclear localization. Furthermore, adenovirus-mediated
FOXO1 overexpression reduced the nuclear expression
of Pdx-1, whereas repression of FOXO1 by FOXO1-spe-
cific small interfering RNA retained the nuclear expres-
sion of Pdx-1 under oxidative stress conditions.
Activation of ERK has been shown to phosphorylate
FOXO proteins, resulting in nuclear exclusion and tran-
scriptional repression. In addition to ERK, direct phos-
phorylation of FOXO by AKT results in cytoplasmic
retention and inactivation, inhibiting the expression of
FOXO-regulated genes, which control the cell cycle, cell
death, cell metabolism and oxidative stress [82,128,129].
Taken together, these studies demonstrate that depho-
sphorylation and activation of FOXO by inhibition of
PI3K/AKT and MEK/ERK pathways has significant
implication for pancreatic cancer treatment and preven-
tion, where Kras is activated in about 90% patients.
In addition to phosphorylation, the acetylation/deace-

tylation of FOXO can be regulated by p300, Cbp
(CREB-binding protein) and Pcaf (p300/CBP-associated
factors) in response to oxidative stress or DNA binding,
followed by deacetylation by class I and II histone dea-
cetylases [130-132], including Sirt1, the NAD+-depen-
dent deacetylase encoded by the ortholog of yeast
longevity gene Sir2 [133]. Therefore, further studies are
needed to examine the consequences of acetylation/dea-
cetylation of FOXO transcription factors on anti-prolif-
erative and anti-angiogenic effects of SFN.
In conclusion, we have demonstrated that SFN induces

cell cycle arrest and apoptosis through regulation of
FOXO transcription factors. Pharmacological and genetic
inhibitions of PI3K/AKT and MEK/ERK pathways can
have synergistic effects on the activation of FOXO tran-
scription factors through dephosphorylation and nuclear
retention. Thus, SFN appears to be as an attractive agent
for pancreatic cancer prevention and treatment.

Methods
Reagents
Antibodies against PTEN, phospho-AKT, AKT, phos-
pho-ERK, ERK, phospho-p38, p38, p21/CIP1, p27/
KIP1, cyclin D1, and b-actin were purchased from Cell
Signaling Technology, Inc. (Danvers, MA). Enhanced
chemiluminescence (ECL) Western blot detection
reagents were from Amersham Life Sciences Inc.
(Arlington Heights, IL). Terminal Deoxynucleotidyl
Transferase Biotin-dUTP Nick End Labeling (TUNEL)
assay kit was purchased from EMD Biosciences/Calbio-
chem (San Diego, CA). Sulforaphane was purchased

from LKT Laboratories, Inc. (St. Paul, MN). Kits for
Terminal Deoxynucleotidyl Transferase Biotin-dUTP
Nick End Labeling (TUNEL) and caspase-3 assays were
purchased from EMD Biosciences/Calbiochem (San
Diego, CA).

Cell Culture
PANC-1, MIA PaCa-2, AsPC-1 and Hs 766T cells were
obtained from the American Type Culture Collection
(Manassas, VA) and cultured in RPMI 1640 supplemen-
ted with 10% fetal bovine serum (FBS) and 1% antibio-
tic-antimycotic (Invitrogen) at 37°C in a humidified
atmosphere of 95% air and 5% CO2

.

Western Blot Analysis
Western blots were performed as we described earlier
[134,135]. In brief, cells were lysed in RIPA buffer con-
taining 1 × protease inhibitor cocktail, and protein con-
centrations were determined using the Bradford assay
(Bio-Rad, Philadelphia, PA). Proteins were separated by
12.5% SDS/PAGE and transferred to membranes (Milli-
pore, Bedford, MA) in a Tris (20 mM), glycine (150
mM) and methanol (20%) buffer at 55 V for 4 h at 4°C.
After blocking in 5% nonfat dry milk in TBS, the mem-
branes were incubated with primary antibodies at
1:1,000 dilution in TBS overnight at 4°C, washed three
times with TBS-Tween 20, and then incubated with sec-
ondary antibodies conjugated with horseradish peroxi-
dase at 1:5,000 dilution in TBS for 1 hour at room
temperature. Membranes were washed again in TBS-
Tween 20 for three times at room temperature. Protein
bands were visualized on X-ray film using an enhanced
chemiluminescence detection system.

Caspase-3 Assay
Cells (3 × 104 per well) were seeded in a 96-well plate with
200 μl culture medium. Approximately 16 h later, cells
were treated with various doses of SFN to induce apopto-
sis. Casapse-3 activity was measured by a fluorometer as
per manufacturer’s instructions (EMD Biosciences).

Statistical Analysis
The mean and SD were calculated for each experimental
group. Differences between groups were analyzed by one
or two way ANOVA, followed by Bonferoni’s multiple
comparison tests using PRISM statistical analysis soft-
ware (GrafPad Software, Inc., San Diego, CA). Significant
differences among groups were calculated at P < 0.05.

List of abbreviations used
ANOVA: Analysis of Variance; PTEN: Phosphatase and Tensin Homolog
Deleted on Chromosome 10; RIPA: Radio-Immunoprecipitation Assay; SDS-
PAGE: Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis; SFN:
Sulforaphane; TBS: Tris Buffer Saline.
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