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Abstract
Background: The effects of estrogens on dopamine (DA) transport may have important
implications for the increased incidence of neurological disorders in women during life stages when
hormonal fluctuations are prevalent, e.g. during menarche, reproductive cycling, pregnancy, and
peri-menopause.

Results: The activity of the DA transporter (DAT) was measured by the specific uptake of 3H-DA.
We found that low concentrations (10-14 to 10-8 M) of 17β-estradiol (E2) inhibit uptake via the DAT
in PC12 cells over 30 minutes, with significant inhibition taking place due to E2 exposure during only
the last five minutes of the uptake period. Such rapid action suggests a non-genomic, membrane-
initiated estrogenic response mechanism. DAT and estrogen receptor-α (ERα) were elevated in
cell extracts by a 20 ng/ml 2 day NGFβ treatment, while ERβ was not. DAT, ERα and ERβ were
also detectable on the plasma membrane of unpermeabilized cells by immunocytochemical staining
and by a fixed cell, quantitative antibody (Ab)-based plate assay. In addition, PC12 cells contained
RNA coding for the alternative membrane ER GPR30; therefore, all 3 ER subtypes are candidates
for mediating the rapid nongenomic actions of E2. At cell densities above 15,000 cells per well, the
E2-induced inhibition of transport was reversed. Uptake activity oscillated with time after a 10 nM
E2 treatment; in a slower room temperature assay, inhibition peaked at 9 min, while uptake activity
increased at 3 and 20–30 min. Using an Ab recognizing the second extracellular loop of DAT
(accessible only on the outside of unpermeabilized cells), our immunoassay measured membrane
vs. intracellular/nonvesicular DAT; both were found to decline over a 5–60 min E2 treatment,
though immunoblot analyses demonstrated no total cellular loss of protein.

Conclusion: Our results suggest that physiological levels of E2 may act to sequester DAT in
intracellular compartments where the transporter's second extramembrane loop is inaccessible
(inside vesicles) and that rapid estrogenic actions on this differentiated neuronal cell type may be
regulated via membrane ERs of several types.
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Background
Dopamine (DA) is a catecholamine neurotransmitter
important in myriad brain functions. Disruptions of DA
neurotransmission are associated with a wide range of
pathological conditions. Gender differences in the expres-
sion of some of these diseases [1], as well as fluctuations
in estrogen levels over the life span in women [2,3], sug-
gest the possibility that estrogens may play a role in mod-
ulating DA signaling [4,5]. In females the predominant
estrogen, estradiol (E2), typically rises from prepubertal
amounts of ~20 pM, to as high as a 2–3 nM peak cycle
concentration in adults, fluctuates during peri-meno-
pause, and eventually falls to chronically lower postmen-
opause levels. In pregnancy E2 levels can rise as high as 20
nM, declining precipitously after parturition. In addition,
other estrogens (estriol, estrone) also change. Estrogens
that fluctuate dramatically and then decline at menopause
can be correlated with the onset of some mood disorders
[6]. Pubertal fluctuations in estrogen levels are associated
with mood variations in young girls [7]. Some women
experience mood disturbances as a function of monthly
cyclic hormonal fluctuations (premenstrual syndrome or
premenstrual disphoric disorder, or in extreme cases, pre-
menstrual dementia [8-10]). Increased body fat actually
protects against cycle-based mood swings [11] and surgi-
cal menopause-based depression, probably by serving as a
depot for lipophillic hormones (including estrogens) that
buffer large changes [12]. Therefore, in patients where
these changes are excessive, disturbances of behavior may
result; it is important to understand the cellular mecha-
nisms through which estrogens operate across this wide
range of physiological levels [13].

There are other specific gender-biased cognitive or neural
function-based medical conditions that can involve DA
synaptic signaling. Crises in schizophrenia/bi-polar disor-
ders can sometimes be directly correlated to menstrual
cycle hormonal fluctuations [14]. There is a sharp rise in
the incidence of Alzhiemer's disease after menopause
[15]. Some diseases that involve DA neurotransmission
are less prevalent or different in premenopausal females
vs. postmenopausal females and males (Parkinson's,
Tourette's, ADHD [16-20]), also suggesting an influence
of estrogens on disease status. Other studies suggest an
involvement of estrogens in cognitive function [21] and
attention [22-24]. Females are also more vulnerable to
cocaine use than are males [25-27]. Thus estrogens prob-
ably broadly influence the status of neural signal trans-
mission.

While estrogens acting through their intracellular recep-
tors are known to regulate gene transcription, it is becom-
ing increasingly clear that estrogens can also initiate
cellular effects at the membrane [reviewed in [28,29]].
Unlike transcriptional events, membrane-initiated events

have the capacity to be dynamically regulated over short
time frames and are not necessarily dependent on protein
synthesis or degradation. Furthermore, membrane-initi-
ated events can best be rapidly detected in cell assay sys-
tems in which estrogens can be experimentally controlled
rapidly. Thus, these nongenomic actions are frequently
referred to as "rapid" actions of estrogens. However, sus-
tained short-term effects of estrogens, or downstream
mechanisms they initiate, can lead to more long-term
consequences in animals.

The primary mechanism through which DA levels are reg-
ulated in the synapse is via reuptake by the DA transporter
(DAT), which is one target of action of a variety of neu-
roactive drugs including antidepressant agents [30]. Thus,
the work reported here was undertaken to characterize a
cell culture system that expresses both DAT and mem-
brane-associated estrogen receptors (ERs) that could be
utilized to investigate the hypothesis that estrogen regu-
lates DAT activity via rapid, nongenomic mechanisms. We
chose a well-known model for neuronal cellular responses
involving the regulation of neurotransmitter transporters
and receptors, the PC12 pheochromocytoma cell line, in
which the presence of intracellular estrogen receptors had
previously been reported [31-33]. We examined the ERs
that are possibly involved (ERα [34], ERβ [35,36], and
GPR30 [37-39]) and ER-mediated functional responses
that may explain estrogenic effects on neurotransmitter
regulation in the synapse. Specifically, we focus on rapid
regulation of the DAT leading to changes in synaptic DA
levels likely to be involved in DA-mediated behavioral
responses. Understanding a mechanistic role for estrogens
in modulating this transporter should suggest new thera-
peutic targets and regimens tailored for female vs. male
patients in the treatment of behavioral disturbances exac-
erbated by fluctuating estrogens.

Results
DAT is upregulated by 2 days of NGF treatment in the 
PC12 pheochromocytoma cell model
Previous studies on NGF treatments of PC12 cells focused
on an enhanced differentiated cell morphological profile
as an endpoint that required relatively long treatment
periods (upregulation of DAT after two weeks of treat-
ment with 50 ng NGF [40]). We sought to achieve func-
tional enhanced DAT levels in a shorter time frame. To
develop a cell model in which robust DAT responses
could be monitored for estrogen regulation after shorter
differentiation times, we chose to assay DAT levels directly
via an immunofluorescence assay. We treated PC12 cells
with low concentrations of NGFβ for 2, 4, and 7 days. An
immunoblot of DAT protein from NGF-treated cells
detected an increase in DAT protein by day 4 of NGF treat-
ment (Fig. 1A). Fig. 1B shows the appearance of DAT on
the membrane of 2 day NGF-treated cells, where DAT is
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evident on both cell bodies and processes. Next we
adapted our immunocytochemistry conditions to a quan-
titative immunoassay for nonpermeabilized fixed-cells in
96-well plates, similar to a previous assay we developed
for other extracellular and intracellular antigens [35,41].
This assay (shown in Fig. 1C) assessed only membrane
DAT (under these nonpermeabilizing conditions) by rec-
ognizing the second extracellular loop of the DAT protein
[42]. We optimized fixation conditions to prevent anti-
body (Ab) from entering the cells (as shown by the low
value for the clathrin Ab control). Clathrin, lying just
under the membrane surface, is an abundant antigen, and
gives a large signal in this assay when cells are permeabi-
lized by adding detergent during the fixation process (not
shown). The NGF-treated cells show an ~8-fold increase
in DAT levels vs. untreated cells after just 2 days. These
data show a concentration curve with increasing Ab to
determine the single concentration of Ab that would satu-
rate the antigen for future one-point assays (1 µg/ml).
Both untreated and NGF-treated levels can be measured
by this assay (both are above the background values
obtained using no 1° Ab or nonspecific IgG to control for
nonspecific Ab binding, and no 1° or 2° Ab to control for
endogenous alkaline phosphatase contributing to the sig-
nal). We chose this two-day NGF treatment as a efficient
and effective way to prepare our cells for robust functional
assays of DAT level changes after E2 treatments.

E2 inhibits DA uptake via the DAT
We next addressed the affect of 10 nM E2 on DA uptake.
First we looked at total DA uptake in PC12 cells (not
blocked by any specific inhibitors to define a particular
mechanism), and found that general uptake was inhibited
by E2 (Fig 2A). We next added the specific DAT inhibitor
nomifensine to define uptake specifically mediated by
DAT (Fig. 2B). Again, E2 significantly blocked DAT-spe-
cific DA uptake. DAT-specific uptake was enhanced in
NGF-treated cells, in agreement with the increased levels
of DAT shown in Fig. 1. NGF-enhanced DAT activity was
inhibited to a similar extent as the basal levels. Finally,
though a 30-min treatment with E2 is considered a rela-
tively short period of time for E2 to act (and so could be
attributable to the nongenomic pathway), some may still
argue that E2-induced transcription and translation could
contribute to an effect in this time frame. Therefore, we
next tested a shorter E2 exposure time during the 30-min
uptake assay (Fig. 2C) to more clearly link this inhibitory
function of E2 to a nongenomic mechanism of action.
Again, treatment with NGF increased the DAT-specific
uptake of DA, suggesting that new NGF-induced DAT is
functional. When 10 nM E2 was added for only the last 5
min of the uptake assay, it dramatically inhibited DAT
activity, more effectively than during the 30-min assay;
uptake was completely reversed with only a 5-min hor-
mone exposure. The NGF-inducible portion of the trans-

port was also completely blocked by E2 treatment. Such
effects not only show rapid and efficient E2 inhibition, but
also suggest that the hormone may reverse the direction of
the transporter, causing DA taken up in the previous 25
min to be removed from the cell.

PC12 cells have message or protein of all three types of 
ERs located in membranes
Next we wished to examine which specific subtypes of ERs
may be present in PC12 cells and could be responsible for
these rapid effects on DA transport. The presence of natu-
rally expressed ERs α and β in PC12 cells and their long-
term (weeks) upregulation by NGF have been previously
reported [31,32,40,43], but not the presence of these pro-
teins in the membrane. Our single protein band for ERα
and the doublet bands seen for ERβ (Figs. 3a and 4a, West-
ern blots) are similar to that seem by others [31] and con-
firm that ERα and ERβ are expressed in PC12 cells. The
results in Fig. 3A also show that ERα can be elevated by a
2 day (or longer) NGF treatment. We were particularly
interested in demonstrating membrane versions of ERs, as
those are the most likely to participate in rapid nong-
enomic responses. Because these immunoblots contained
ER protein from whole cell extracts, we next examined the
subcellular location of these receptor proteins. As
expected, ERα was shown to be in the nucleus of fixed,
permeabilized cells (data not shown). ERα was heteroge-
neously present on membranes of fixed, nonpermeabi-
lized cells (Fig. 3B), and appeared on both the cell body
and processes, arranged in irregularly spaced punctate
clusters. This is similar in appearance to the mERα stain-
ing that we have observed previously [44-46]. We next
applied these nonpermeabilizing immunocytochemistry
conditions to developing a quantitative plate assay that
we have used previously to demonstrate mERα on other
cells [35,47]. Fig. 3C shows saturability of the membrane
antigen with increasing Ab concentrations, and compari-
sons of the low levels of membrane receptors to the levels
of nuclear ERα measured with the same technique in cells
permeabilized with detergent. The bars show the values
for these proteins when cells are permeabilized, and the
symbols within each bar show the same values in nonper-
meabilized cells. As expected, the membrane population
of these proteins is much smaller in each case than the
whole-cell value in permeabilized cells. Negative controls
(including no 1° Ab to detect any nonspecific binding of
the 2° Ab, and no 1° or 2° Abs to detect any endogenous
alkaline phosphatase contributing to the colorimetric sig-
nal) gave very low values. The clathrin signal in unperme-
abilized cells was very low, and the permeabilized cell
value was quite high, as expected for a protein residing
just inside the plasma membrane.

The other classical ER family member, ERβ was then sim-
ilarly investigated. In contrast to ERα, NGF treatment
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DAT proteins are present in the membranes of PC12 cells and are elevated by 2–7 day NGFβ treatmentFigure 1
DAT proteins are present in the membranes of PC12 cells and are elevated by 2–7 day NGFβ treatment. A. Cell lysate 
immunoblots with Ab to the second extracellular loop of DAT, showing an increase in DAT protein levels due to a 20 ng/ml NGFβ treat-
ment over a time course of 2 (NGF 2d), 4 (NGF 4d) and 7 (NGF 7d) days, compared to controls without NGFβ treatment (2d, 4d, and 
7d). Representative of 2 experiments. B. Staining of nonpermeablized fixed cells with the same DAT e2 Ab. Fluorescent images viewed 
with an FITC filter were photographed. Vector Red appears as orange-red signal on a background of yellow-green autofluorescence (typ-
ically seen with this cell fixation protocol). Note the staining of cell bodies, especially at the growth cones (overexposed), and the smaller 
amount of staining on processes of these NGFβ-differentiated cells. The bar represents 2 µm. C. DAT levels are stimulated ~8-fold on 
day 2 of NGFβ treatment, as demonstrated by the plate immunoassay of fixed cells using the same e2 DAT-specific Ab; 2° Ab conjugated 
to alkaline phosphatase was used to generate paranitrophenol (pNp) colorimetric signals, which were normalized to the cell number 
determined in each well by the crystal violet (CV) assay. Symbols are +NGF (■); -NGF (❍). Controls: NGF-treated cells probed with a 
nonspecific IgG Ab is labeled as "+NGF IgG" (▼) "-NGF IgG" IgG (�); clathrin ( ); no primary Ab (no 1° Ab) and no primary or second-
ary Ab (no 1°, no 2° Abs) are at the origin. A very low clathrin Ab signal under these nonpermeabilizing conditions demonstrated the lack 
of inadvertent permeabilization of the cells in these assays. This graph represents the average values from 3 experiments ± S.E.M.
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spanning 7 days did not affect the levels of this receptor
protein (Fig. 4A). In Fig. 4B mERβ was assessed by immu-
nocytochemistry on NGF-differentiated cells prepared
with a nonpermeabilizing fixation technique. The appear-
ance of mERβ was very similar to that of mERα – hetero-
geneous membrane staining among cells, punctate, and
unevenly distributed over both cell bodies and processes.
Again, measurement of this receptor was amenable to a
quantitative plate assay (Fig. 4C) which showed a satura-
ble receptor protein antigen in the membrane, with some-
what higher levels present in the whole (permeabilized)

cells; low negative control values and high positive con-
trol values were similar to those shown for the ERα plate
assay.

Finally, we examined RNA from these cells to determine if
the rat GPR30 RNA was expressed; the lack of a specific Ab
for rat GPR30 necessitated this approach. An RT-PCR
amplimer of the anticipated size can be produced from
PC12 cell RNA (Fig. 5) using two different sets of primers.
This result matches those for the positive control cell line,
MCF-7 human breast cancer cells. No signal was evident
when RNA samples were omitted, showing that contami-
nated reagents did not produce this signal. Though this
RT-PCR detection is not a quantitative method, the levels
of GPR30 RNA in PC12 cells appear to be similar to that
in MCF-7 cells.

DA uptake is regulated by E2 dose, time of exposure to E2, 
and density of E2-exposed cells
In previous studies we noted that mERα and the down-
stream effects it mediates in pituitary (GH3/B6/F10) cells
were profoundly influenced by the density at which cells
were grown; with increasing cell density, the expression of
mERα (in favor of intracellular ERα) declined dramati-
cally. Cells grown at higher densities (though not unusual
densities for most cell culture experiments) also became
unresponsive to E2 for nongenomic actions [46]. There-
fore, we examined the effect of cells grown at various den-
sities on the 5 min, 10 nM E2-induced inhibition of DA
uptake in PC12 cells (Fig. 6A). Increasing the density from
10,000 to 15,000 cells per well of a 48-well plate increased
the measurable DA uptake; E2 was still completely effec-
tive in inhibiting this higher level of uptake. However,
when cells were further crowded to 20,000 cells per well,
the inhibitory effect of E2 was lost, and instead an estro-
genic stimulatory effect on DA transport was observed.

Because we have repeatedly observed non-conventional
dose-response relationships for these nongenomic estro-
genic responses, we always test our responses over a very
wide (fM to nM) concentration range. Fig. 6B shows such
an analysis for E2's effects on the DA uptake response. As
we have observed for rapid responses in other tissues
[29,41,48,49], there is more than one peak of inhibitory
activity for E2 in PC12 cells, separated by concentrations at
which E2 is less effective (10-10 M).

To determine the rapidity and stability of this estrogenic
effect on DA transport, we examined a time course of 10
nM E2 exposure, concentrating on the more rapid (<30
min) increments expected to operate via the nongenomic
mechanism. As we have seen many times in the past for
nongenomic responses [41,47], rapidly oscillating tempo-
ral phases of this response were evident. Because these
effects changed rapidly over time (from inhibition to

DA uptake is inhibited by 10 nM E2 in PC12 cellsFigure 2
DA uptake is inhibited by 10 nM E2 in PC12 cells. Estradiol (E2), 
vs. ethanol vehicle (Control) was added to the cells together with 3H-
DA for a 30 minute incubation, * = significantly different from vehicle 
control at p < 0.05. A. Cells were serum-starved for 48 hours with no 
NGFβ treatment. Total cellular uptake of DA over a 30 min period ± 
E2 treatment was monitored. B. Cells were serum-starved while being 
treated for 2 days ± 20 ng/ml NGFβ. DAT-specific DA uptake was 
measured over a 30 min period ± E2 treatment. NET- and DAT-block-
ing drugs were included to evaluate DAT-specific uptake of DA. # = 
significantly different vs. NGFβ-treated control (p < 0.05). C. The 
rapid effects of E2 treatment on 3H-DA uptake were shown when E2 
treatment was added only during the last 5 minutes of the 30 min 
uptake assay. # = significantly different vs. NGFβ-treated vehicle con-
trol (p < 0.05).
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enhancement of uptake) at 37°C, the results had some-
what large error ranges, as expected for such a fluctuating
system over short time intervals when samples have to be
removed from the incubator for analysis. Therefore, we
reduced the temperature of the assay (to ambient) to
hopefully create a more stable experimental demonstra-
tion of this oscillation. Under these conditions (Fig. 6C),
peak inhibitory effects were seen at the 9 min time point.
A small transport enhancement occurred at 3 min and a
more robust one at 20–30 min.

E2 affects DAT protein localization, but not overall cellular 
levels
Because DAT-mediated uptake was inhibited by E2, we
next examined whether this could be due to E2-induced

DAT trafficking or reduced protein levels. We adapted our
quantitative plate assay for DAT to measure cell surface vs.
intracellular DAT, by permeabilizing the cells for the latter
measurement with detergent during the cell fixation step.
An Ab to the second extracellular loop of DAT recognizes
transporter which is either on the plasma membrane or
inside the cell, but not vesicle-bound (in which case the
2nd loop would be facing the inaccessible vesicle interior).
Fig. 7 shows that the amount of DAT was decreased in
both of these cellular compartments. Next we looked at
the whole-cell levels of DAT protein, to determine if E2
might have an effect on rapid DAT protein stability. Such
rapid turnover sometimes occurs for phosphoproteins
that after activation are subsequently ubiquitinated and
sent to proteosomes or lysosomes. Fig. 8 shows that E2

PC12 cells have both membrane and intracellular ERα that is increased by NGFβ treatmentFigure 3
PC12 cells have both membrane and intracellular ERα that is increased by NGFβ treatment. ERα was detected with C542 Ab. A. Protein 
levels of ERα in whole-cell extracts were determined by immunoblot analysis at 2, 4 and 7 days ± NGFβ treatment in medium lacking serum. Representa-
tive of 3 experiments. B. Micrograph of immunocytochemical staining of ERα using nonpermeabilized cells that had been serum-starved for 48 hours while 
being treated with 20 ng/ml NGFβ. The bar represents 2 µm. Fluorescent images viewed with an FITC filter were photographed. Left panel: Transmission 
micrograph of middle panel. Middle panel: Immunocytochemistry of ERα shown in red (Vector Red product), while the autofluorescent background is 
green. Right panel: Punctate ERα staining is irregularly distributed on the cell surface of a more highly magnified cell. C. The fixed cell microplate immu-
noassay shows that ERα is present in PC12 cells grown in serum-containing medium. The values for nonpermeabilized cells are shown by symbols: ●  dif-
ferent ERα Ab concentrations, � combined control conditions (IgG isotype control, no 1°, and no 1°/no 2°), superimposed at the origin as their values are 
all very low and do not differ from each other significantly,  clathrin. The values for permeabilized cells are shown by bars at the appropriate Ab concen-
trations. The crosshatched bar is ERα, the gray bar at the origin represents combined controls (see above), and the white bar is clathrin (the permeabiliza-
tion indicator). This graph represents average values from 3 experiments ± S.E.M.
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PC12 cells have both intracellular and membrane ERβFigure 4
PC12 cells have both intracellular and membrane ERβ. Monoclonal Ab clone 9.88 was used for detection. A. Protein 
levels of ERβ in whole-cell extracts were determined by immunoblot analysis. ERβ is present in cells grown in serum-free 
medium, but is not induced by NGFβ over a 7-day period. Representative of 3 experiments. B. Immunocytochemistry of non-
permeabilized cells treated with 20 ng/ml NGFβ for 2 days before staining. The bars represent 2 µm. Fluorescent image micro-
graphs were viewed with an FITC filter were photographed. Left panel: Transmission image of middle panel. Middle panel: 
membrane ERβ immunofluorescence present heterogeneously on cells. Right panel: Punctate ERβ staining is irregularly distrib-
uted on the cell surface of a more highly magnified cell. C. Both nonpermeabilized cells (symbols) and permeabilized cells (bars) 
were assessed for ERβ by the plate assay over an Ab saturation curve. Controls (C) are as previously described in Figures 1 
and 3. The cross-hatched bar is clathrin from permeabilized cells; ▼ = clathrin signal from unpermeabilized cells. The solid gray 
bar represents combined controls (IgGκ, no1°, no2° Abs) from permeabillzed cells and ▲ = the same combined controls in 
unpermeabilized cells. The white bars represent values for ERβ Ab 9.88 detection in permeabilized cells at the concentrations 
shown on the X axis. This graph represents average values from 2 experiments (each with multiple samples) ± S.E.M.
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treatment had no effect on DAT protein levels, compared
to vehicle-treated cells, across a time course of 5 min to 1
hr.

Discussion
Our studies demonstrated the expression of DAT and sev-
eral types of membrane ERs (ERα, ERβ and GPR30) in
PC12 cells. We demonstrated early (2 day) low-dose NGF
enhancement of DAT and ERα levels, with functional con-
sequences. Our qualitative and novel quantitative demon-
stration of membrane versions of ERα and ERβ in these
cells suggests that they could be mechanistic mediators for
the rapid E2-induced functional effects we saw; these
effects are too rapid to be mediated by nuclear receptors
via transcriptional controls. Furthermore, detection of
GPR30 RNA expression in PC12 cells suggests that this
newly described unique ER could also participate in these
responses. We demonstrated that physiological levels of
E2 (fM to 10 nM) can cause very rapid and dramatic inhi-
bition of DA transport in PC12 cells. This is similar to
rapid effects on serotonin transport that we previously
described in RN46A cells [48]. These changes in DAT
activity are not due to any major effects on turnover of the
DAT protein, but instead probably operate via trafficking
of DAT [50] into vesicles that protect its extracellular
domains from Ab detection, or posttranslational modifi-
cation mechanisms that remain to be investigated.

Can estrogen treatments alleviate human diseases which
may involve DA transmission? Treatment with certain

Inhibition of DA uptake by E2 is regulated by cell density, and dose and time of E2 treatmentFigure 6
Inhibition of DA uptake by E2 is regulated by cell density, and 
dose and time of E2 treatment. Cells were serum-starved while being 
treated for 2 days with 20 ng/ml NGFβ. NET- and DAT-blocking drugs 
were included to define DAT-specific uptake. A. DA uptake inhibition by 
10 nM E2 is robust at 10,000 and 15,000 cells/well, but reversed at densi-
ties as high as 20,000 cells/well. DAT-specific DA uptake was measured 
over a 30 min period ± E2 treatment during the last 5 minutes of the assay. 
* = significant difference between control and E2-treated samples at the 
level of p < 0.05. # = significant difference in DA uptake due to cell density 
conditions. B. All doses of E2 from 10-14 to 10-8 M caused inhibition of DA 
uptake, though with different levels of effectiveness, and in a nonconven-
tional dose-response pattern. * = significant difference between control 
and E2-treated samples at the level of p < 0.05. C. The oscillating effects of 
10 nM E2 on DA uptake at room temperature. Ethanol control background 
was subtracted from these values.
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GPR30 RNA is present in PC12 cellsFigure 5
GPR30 RNA is present in PC12 cells. The presence of 
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estrogens has been shown to relieve some cases of post-
partum depression (reviewed [51]). However, the reasons
for the failures in other cases, or a rationale for specific
dose and estrogen choice is still not clear. Direct evidence
supporting an estrogen treatment strategy includes simu-
lation of pre- and post-partum estrogen levels [52]. There
is a rat model for E2 reversal of depression [53], yet E2 ther-
apy in humans is not always effective in reversing mood
depression [52,54-56]. One explanation for these discrep-
ancies could be that other prominent estrogen metabo-
lites (estrone, estriol) are also involved in this function,
and must be included as part of treatments to address
mood maladies brought on by hormonal increases or def-
icits. In addition, the efficacy of such treatments could
depend upon appropriate estrogen concentrations, and
our studies have demonstrated once again [29,41,48,49]
that a nonconventional dose-response relationship makes
predictions of effective doses more difficult.

One of the regulatory effects we observed for this estro-
gen/DA signaling model system was the change in estro-
genic response due to the extent to which cells were in
contact with each other (brought on by increasing cell
density). We have previously observed similar changes in
effects due to increasing cell density – inhibition of mERα
expression and linked responses in other cell types

[46,47]. Experiments using cells grown at these higher
inhibitory densities is quite common in most laborato-
ries, and may be a common cause for negative reports for
nongenomic signaling mechanisms and membrane ster-
oid receptor detection. In addition, we observed these
effects to oscillate over time, similar to our previous obser-

DAT levels in whole-cell extracts are not affected by E2 treatment for 5–60 minFigure 8
DAT levels in whole-cell extracts are not affected by E2 
treatment for 5–60 min. Cells were serum-starved and NGFβ-
treated for 2 days, then treated with 1 nM E2 vs. ethanol vehicle 
(C). Cell lysates were processed for immunoblot analysis with 
DAT Ab e2. DAT protein levels did not change due to E2 treat-
ment over a 5–60 min time course. Representative of 2 experi-
ments.
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Effects of acute E2 treatment on DAT protein levels in the membrane vs. intracellular compartment using the fixed cell immu-noplate assayFigure 7
Effects of acute E2treatment on DAT protein levels in the membrane vs. intracellular compartment using the 
fixed cell immunoplate assay. After the cells had been serum-starved and NGFβ-treated for 2 days, 10 nM E2 or ethanol 
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ing the cell permeabilization status, as in previous figures. All E2-treated samples had DAT values significantly lower than etha-
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vations of other nongenomic effects. The mechanisms
likely to be involved in such regulation (such as post-
translational modifications of proteins) are also capable
of rapid reversal and compensatory changes over time and
in response to changes in cell-cell contact, such as those
that occur during development. Clearly, much more infor-
mation about the effects of such regulatory constraints on
the nongenomic estrogenic response system and its recep-
tor(s) are needed before we can take advantage of these
mechanisms in therapeutic design. These data also dem-
onstrate why precise dose-response and temporal
response information is very important for determining
safe and effective replacement therapies with estrogens.
Because estrogens can increase the risk of cancers such as
those of the breast, uterus [57], and pituitary [58], and
may cause a decline in specific cognitive functions
[59,60], dose and scheduling of replacements may be
quite important. Though the protective effects of some
estrogens against ischemic and glucocorticoid-induced
brain injury have been demonstrated [61,62], such stud-
ies have focused on very high doses of estrogens that are
unacceptable for chronic use because of the cancer risk.
Therefore, we clearly do not yet understand the specifics of
how estrogens act in the nongenomic pathway regarding
tissue-specificity and non-classical dose-response patterns
[63]. Thus, knowing parameters such as the lowest effec-
tive estrogen dose ranges and the kinetics of these
response mechanisms are critical.

Our data suggest that one mechanism that may mediate
E2-induced DA uptake inhibition is trafficking of DAT to
an Ab-inaccessible site inside the cell. Recent reports show
that DAT can be regulated by endocytosis [50,64-67]. In
addition, agents that cause phosphorylation of DAT may
regulate their trafficking by sequestration to particular
intracellular compartments [50,67,68]. PKC probably
mediates these effects via modification of a C-terminal
pentapeptide sequence with homologies between DAT,
SERT and the norepinephrine (NET) transporters [50]. E2
is known to activate protein phosphorylating enzymes
(including PKC) via nongenomic pathways (reviewed in
[69]), and so could affect the functions of DAT (and other
transporters of this family) via this mechanism. Phospho-
rylation also sometimes marks proteins for ubiquitin-tag-
ging, removal to proteosomes, and degradation [67,70].
This does not appear to be the case in our experimental
system, as no noticeable DAT protein loss occurred over
short-term E2 exposure. However, it should be noted that
immunoblot quantitation seemed to be the least sensitive
of our assays in detecting changes in protein levels. But
since no dramatic changes in levels were evident, it is
more likely that the direct estrogenic effects in our system
are on activity and localization of the DAT machinery.

Our observations of candidate ER proteins in the plasma
membrane of PC12 cells, coincident with a rapidly medi-
ated estrogenic effect, adds yet another example to our
growing list of such steroid-regulated systems employing
the nongenomic pathway of action. We have done exten-
sive studies on the cellular localization of the ERα in the
GH3/B6/F10 cell model and visualized the membrane ver-
sion of this receptor by a variety of techniques
[34,35,44,45]. We have also recently extended these stud-
ies to ERα in MCF-7 cells [71] and we developed a similar
story on the expression of the membrane glucocorticoid
receptor [72,73] in lymphoid tissues. Overall, we find that
the relative number (fewer membrane receptors com-
pared to nuclear receptors), distribution, and appearance
of these apparently clustered groups of receptors is simi-
lar, and agrees with membrane steroid receptor character-
izations by other investigative groups (for example,
[74,75]). However, the presence of mERβ in PC12 cells is
unique among cells we have studied using these tech-
niques; mERβ has only previously been observed in cells
over-expressing an ERβ cDNA [36]. Our observation of
the presence of GPR30 RNA in these cells presents a third
possibility for regulation of DAT by an ER perhaps co-res-
ident in the plasma membrane of these cells [76]. Future
studies will examine the specific roles of each of these
membrane receptor subtypes in the regulation of the DAT.

Conclusion
In summary, elucidating the underlying cellular mecha-
nisms and receptors that are responsible for steroid regu-
lation of neurotransmitter transporter functions will be
critical for medical decision-making about the appropri-
ate amount and type of hormones administered for ther-
apeutic benefit. This will be critically important for such
common conditions as post-surgical or post-menopausal
estrogen loss, and monthly or pregnancy cycle fluctua-
tions. We must understand the basic actions of physiolog-
ical estrogens such as E2 on this system, so that analogs or
antagonists can be utilized to alleviate life-stage-specific
estrogenic effects or deficits. A new focus on nongenomic
steroid effects may allow entirely new approaches to treat-
ing these maladies, and explain which physiological estro-
gens at what doses should be considered in the diagnosis
and treatment of these diseases.

Methods
Cell culture and hormone administration
We propagate our PC12 cells in 15% serum-containing
medium, releasing them for subculture by repeatedly
pipetting the cells. However, before each experiment, cells
were transferred to a defined medium for 48 hrs to insure
withdrawal from the effects of estrogens and other hor-
mones and growth factors present in serum. Our defined
medium is high-glucose, phenol red-free RPMI 1640
(Gibco/Invitrogen, Grand Island, NY), substituting the
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15% serum with TCM serum replacement (Celox Labora-
tories, St. Paul, MN). During this serum starvation period
NGFβ (a gift from Dr. Regino Perez-Polo) was added to
(at 20 ng/ml) to designated cultures for these studies. We
study "native" cell regulation using NGF stimulation to
achieve levels of DAT in our cells that can be easily assayed
for the inhibitory effects of E2, instead of transfecting cells
with constructs that will over-express DAT. In this way our
studies differ from many previously published DAT regu-
lation studies. Under these conditions, regulatory interac-
tions may be subject to fewer artifacts due to over-
expression, such as normal receptor level interactions
with other signaling molecules.

Immunocytochemistry
PC12 cells plated on poly-D-lysine (10 µg/ml)-coated
coverslips were cultured in 6-well plates at densities of
20,000–40,000 cells per well for 24 hours. After serum
starvation ± NGF treatment, cells were fixed using 2%
paraformaldehyde (Fisher Scientific, Houston, TX), and
0.2% gluteraldehyde (Electron Microscopy, Fort Washing-
ton, PA) for 30 minutes. Where applicable, cells were per-
meabilized during fixation by adding NP-40 (or IGEPAL
CA-630 can be substituted) and sucrose [35].
Unquenched aldehydes were reduced by applying a 13
mM NaBH4, 70 mM NaHPO4 aqueous solution for 15
minutes at room temperature. For additional reduction of
autofluorescence background, Schiff's Reagent (Fisher)
was applied for 15 minutes while on ice, and then rinsed
off three times with sulfurous water (equal volumes of 1
N-HCl and 10% sodium metabisulfite aqueous solution).
The wells were washed (for 10 minutes) with a second
reducing solution (1%Na2HPO4/1%NaBH4 in ddH2O) at
room temperature, with light shaking. This was followed
by a 15 minute PBS wash. Cells were then blocked for 45
minutes at RT with 0.1% coldwater fish gelatin (Sigma, St.
Louis MO) in PBS. The cells were incubated overnight at
4°C (with light orbital shaking) with primary Ab (diluted
in fish gelatin/PBS); the 1° Ab we used for detection of
ERα, at concentrations of 2–10 µg/ml was C542 (Stress-
Gen, Inc., Collegeville, PA). Anti-ERβ monoclonal Ab
(clone 9.88, Sigma E1276) was used at dilutions ranging
from 1:500–1:2000. Ab DAT/e2 to the DA transporter
binds to the second extracellular domain [42], and was
obtained from A. Levey (Emory Univ.). It was used at con-
centrations ranging from 0.025–10 µg/ml. Anti-clathrin
Ab (ICN Biochemicals, Inc., Aurora, OH) was used in con-
centrations of 1–3 µg/ml as a control for cell permeabili-
zation. We used mouse IgG1κ (Sigma) as an irrelevant Ab
and isotype control. Secondary Ab (either biotinylated
mouse IgG or IgM, from Vector Laboratories, Burlingame,
CA) was diluted (50 µl/10 ml) in 0.1% fish gelatin/PBS
and incubated with samples for 1 hour at RT. Using a kit
from Vector Laboratories, ABC-AP solution (diluted in
PBS) was added, followed by a series of PBS washes, and

then Vector Red alkaline phosphatase substrate (Vector
Laboratories) was added for 2–5 minutes. The alkaline
phosphatase substrate was prepared by adding 2 drops of
each reagent from the kit to 5 ml of 100 mM Tris-HCl (pH
8.2–8.5) and adding the endogenous phosphatase inhib-
itor levamisole (Vector Labs) to a final concentration of
0.5 mM. The solution was removed and the wells imme-
diately rinsed with ddH2O; a small volume was left in
each well until the coverslip was ready to go through the
following cycle: dehydration with two changes of 70%
ethanol (30 seconds each), followed by two changes of
100% ethanol (30 seconds each). The coverslips were
then cleared with three xylene washes (3 minutes each)
and then mounted with Cytoseal 280 (Electron Micros-
copy). Images were viewed under an FITC filter with a
Leitz fluorescence microscope equipped with a Cool-
SNAP-Pro digital camera from Media Cybernetics using
Image-Pro Plus software. The cell images were viewed
using a wide-spectrum FITC filter. Under these conditions
the intense red staining of Vector Red is observed as
orange red staining; the green staining is aldehyde-
induced autofluorescence background. We used these
photographs with included autofluorescence background
to give a simultaneous cell outline upon which the Ab-
mediated Vector Red signal is visible. Specific staining was
also visible using a rhodamine filter, but without the
green background (not shown).

Western blotting
PC12 cells were grown to 50% confluence in 100 mm
Petri dishes and serum-starved ± NGF for 2–7 days. Cells
were then rinsed twice with ice-cold PBS and solubilized
in 0.5 ml of lysis buffer (20 mM Tris; 150 mM NaCl; 1 mM
EDTA; 1 mM EGTA; 1% Triton X-100; 2.5 mM sodium
pyrophosphate; 1 mM β-glycerolphosphate; 1 mM
Na3VO4; 1 µg/ml leupeptin; 1 mM PMSF) at 4°C. After
sonication (4 × s, 5 sec each), the insoluble materials were
removed by centrifugation at 15000 × g for 10 min. The
extract was treated with SDS sample buffer and boiled for
5 min. Aliquots were assayed for protein concentration
(BioRad), and 20 µg/ml total protein was subjected to
SDS-PAGE in 10% acrylamide, and then transferred to a
nitrocellulose membrane. Blots were blocked (2% nonfat
dry milk, 1% BSA in 10 mM Tris-buffered saline pH 7.4)
for 1 hour, followed by overnight incubation with pri-
mary Ab for ERα (1 µg/ml Stressgen, SRA 1010), ERβ
(1:1000, Sigma E1276), or DAT (DAT/e2, 1:500 from A.
Levey) at 4°C. Blots were then rinsed and incubated with
peroxidase-conjugated anti-mouse IgG (1:4000, Southern
Biotech) for ERα and ERβ, and peroxidase-conjugated
anti-rat (1:4000, Southern Biotech) for DAT at RT for 2
hours. Immunoreactivity was detected on X-ray film
(Amersham) by enhanced chemiluminescence.
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Plate immunoassay for detection/quantitation of DAT and 
Ers
We originally developed sensitive and specific quantita-
tive fixed cell sandwich immunoassays suitable for 96-
well plates for demonstrating mERα on the cell surface of
both GH3 cells and MCF-7 breast cancer cells [35,47]. For
the present studies we further adapted the assay for use
with PC12 cells, to measure DAT, ERa and ERβ. Cells were
plated in serum-containing medium, fed with serum-free
defined medium for 48 hrs, then fixed with 2% parafor-
maldehyde/0.1% glutaraldehyde. Cells were then treated
with the following reagents, with washing steps between
each application: NaBH4 for free aldehyde reduction; fish
gelatin for blocking; 1° Ab; biotinylated 2° Ab; avidin-
conjugated alkaline phosphatase; and levamisole (to
block the endogenous mammalian subtype of alkaline
phosphatase). Then pNpp, a substrate for alkaline phos-
phatase, was added, producing a soluble yellow dephos-
phorylated product (pNp) measured at A405 nm. Finally,
the pNp reagents were washed from the wells, and the
cells stained with crystal violet (CV); after extraction, this
dye was read at A590 nm as a measure of cell number, to
which our antigen values were normalized.

This assay was adapted to measure the same antigens in
the intracellular compartment by simply including mem-
brane-permeabilizing detergents in the fixation step, so
that levels of intracellular (permeabilized) and extracellu-
lar (unpermeabilized) antigens can be compared by
essentially the same methods [35]. We thus assayed mem-
brane antigens for intracellular relocation (trafficking). Ab
for the abundant intracellular antigen clathrin was used to
determine the permeabilization status of the cells in each
assay.

Measurement of DA transport [77]
Cultured PC12 cells (1–4 × 104/well in poly-D-lysine-
coated 48-well plates) were rinsed and preincubated in
buffer for 30 min under assay conditions at 37°C. Inhibi-
tors were included in this preincubation step. Transport
assays were initiated by adding buffer containing 3H-DA
(Dupont NEN, 50 nM for single point assays), monoami-
neoxidase inhibitors pargyline or selegeline [78], ascorbic
acid (for metabolic stability of E2 and other compounds),
and 50 nM DMI (to inhibit any contribution from the
NET). The specific DAT inhibitors nomifensine (500 nM)
or GBR-12909 (100 nM) were included in parallel sam-
ples; the differences between responses ± these inhibitors
were used to define uptake due to DAT. In some cases E2
was added concomitantly with the labeled DA; in other
cases it was added after the labeled DA incubation had
continued for number of minutes; thus E2 was added only
for the last min of the uptake assay. Assays were termi-
nated by rapidly washing the wells 3 × with ice-cold
buffer. Cells were then solubilized in water for 15 min at

room temperature with shaking, or by a freeze-thaw cycle,
and an aliquot assessed for 3H via liquid scintillation
counting. In some cases, another aliquot was assayed for
protein content with a Bio-Rad Bradford assay; this value
determined wells where cells had become disengaged
from the well bottom, for data exclusion. Uptake assays to
determine the temporal changes in regulation were done
at 15,000 cells per well and at room temperature, slowing
the reaction and allowing for less error prone measure-
ments.

RNA isolation and PCR analysis
RNA was prepared from PC12 cell lysate using the
RNAqueous kit (Ambion). First-strand cDNA synthesis
was performed using the SuperScript III First Strand Syn-
thesis System for RT-PCR (Invitrogen). Briefly, 2 µg RNA,
50 µM oligo(dT), 10 mM dNTP mix, and DEPC-treated
water up to 10 µl final volume was incubated at 65°C for
5 minutes and placed on ice for 1 minute. The samples
were then incubated for 50 minutes at 50°C with the
addition of 10 µl of cDNA synthesis mix containing RT
buffer, 25 mM MgCl2, 0.1 M DTT, RNaseOUT, and Super-
script III RT (200 U/µl). The reaction was terminated by
heating the samples to 85°C for 5 minutes. The PCR reac-
tion was performed in 25 µl GoTaq Flexi DNA Polymerase
buffer (Promega) containing 0.2 µM of both gene specific
sense and antisense primers, plus 0.5 µl of the RT reaction.
The primers (kind gift of Dr. Peter Thomas [39]) were
designed using GenBank sequence accession no.
BC011634. Primer set 1 was: sense, 5'-GGC TTT GTG
GGC AAC ATC-3'; antisense, 5'-CGG AAA GAC TGC TTG
CAG G-3'. Primer set 2 was: sense, 5'-GCA GCG TCT TCT
TCC TCA CC-3'; antisense, 5'-ACA GCC TGA GCT TGT
CCC TG-3'. The PCR product was obtained using the
GeneAmp PCR system 9700 with 35 cycles of 30 sec at
94°C, 30 sec at 55°C, and 2 min at 72°C followed by a
10-min extension at 72°C. The PCR products were elec-
trophoresed in a 1% agarose gel containing 0.5% ethid-
ium bromide, and bands corresponding to the anticipated
products of 680 bp (primer set 1) and 585 bp (primer set
2) were identified.

Statistics
A one way ANOVA (SigmaStat 3.0) was used to determine
the significance of treatment effects compared to vehicle
controls. Statistical significance was accepted at the p <
0.05 level.
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